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Chapter 3 

Losses in strands 
The main objective of this chapter is to present a brief survey of the main loss 
components at strand level, namely the hysteresis loss in the filaments, the 
transport-current loss and the interfilament coupling loss. 
 The theory of the filament hysteresis and transport-current loss is 
discussed and general formulas are presented to describe the loss during a 
field change. The magnetisation due to the filament hysteresis in several 
LHC-type strands is experimentally determined. 
 The interfilament coupling loss is dealt with in detail and experimental 
results are given for several LHC-type strands in terms of the time constant τif 
which quantifies the loss. The reduction of the maximum transport current in 
a strand, due to the additional interfilament coupling currents is discussed. 
The corresponding effect of the interfilament coupling currents on the ramp-
rate limitation of dipole magnets is investigated. 
 The influence of the magnetisation of adjacent strands on the hysteresis 
loss and interfilament coupling loss is experimentally investigated, by 
evaluating the losses within the strand for a single strand as well as for a 
Rutherford-type cable.  
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3.1 Introduction 
In accelerator magnets, and especially at low excitation levels and small field-sweep rates, 
the energy loss and the field distortions are mainly determined by the filament hysteresis. 
The magnetisation or hysteresis loss is a well-understood phenomenon and it has already 
been shown in 1963 that the hysteresis can be reduced by the use of multifilamentary 
composite conductors with a small filament diameter [London, ’63]. In order to provide 
stability and a good thermal conductivity the matrix of the conductors is generally a normal 
metal with a low electrical resistivity. This leads to the so-called interfilament coupling loss 
(IFCL) due to eddy currents in the normal matrix. The IFCL has been extensively treated by 
many authors and a useful publication is one by Campbell in which the IFCL and the time 
constant are discussed for various conductor geometries [Campbell, ’82]. Detailed 
numerical solutions of the AC behaviour of superconducting wires have been presented 
during the last decade [Rem, ’86], [Hartmann, ’89]. Knowledge of the IFCL in the strands 
of a cable is necessary for separating the IFCL from the interstrand coupling loss in 
magnets. Only then can the origin of ramp-rate induced field-distortions and ramp-rate 
induced quenches in magnets be correctly evaluated. 
 In section 3.2 the hysteresis loss is discussed and illustrated by means of the current and 
field distribution over the cross-section of a filament exposed to a field cycle. It is shown 
that an additional transport current increases the total loss which is partially supplied by the 
external field and partially by the current supply. 
 Experimental results of the filament magnetisation are presented in section 3.3 for 
various cables from which the coils of the LHC dipole model magnets are wound. The 
analysis is made for filaments carrying no transport current exposed to field variations 
between -0.6 and 0.6 T at low frequency, so that the screening effect of the interfilament 
coupling currents (IFCCs) is small compared to the applied field. In chapter 6 the results are 
compared quantitatively to the hysteresis loss in entire coils. 
 The IFCCs are discussed in section 3.4 and it is shown that the loss can be represented 
by a mean time constant τif. The influence of the IFCCs, which saturate the outer layer(s) of 
filaments in a strand, on the maximum transport current is investigated. Experimental results 
are presented of τif of various cables as used in the LHC dipole model magnets and the 
corresponding decrease of the maximum transport current is estimated.  
 The influence of the neighbouring strands on the loss in a strand is discussed. This is 
achieved by determining not only the hysteresis loss and IFCL in a cable but also the losses 
in a single strand which is removed from the cable. The results and consequences for 
magnets are presented in section 3.5. 

3.2 Hysteresis loss 
If a superconducting filament without transport current is subjected to an increasing 
transverse magnetic field Ba, the field penetrates from the outside while the interior of the 
filament will remain field-free due to screening currents with density ± JC in the outer region 
(see Fig. 3.1a). The contour seperating the screening currents region from the current-free 
region will penetrate the filament as the field increases because the critical current density is 



Losses in strands  45 

 
Figure 3.1. a. Current and field profiles of a superconducting filament without transport current in a 

varying external field: 1. Ba,1 < Bp, 2. Ba,2 = Bp and larger, 3. Ba,2-2Bp < Ba,3 < Ba,2, 
4. Ba,4 = Ba,2-2Bp and smaller.   

b. Current and field profiles of a superconducting filament carrying a transport current in a 
varying external field: 1. field Ba,1, 2. Ba,1-2Bp < Ba,2 < Ba,1, 3. Ba,3 = Ba,1-2Bp and smaller, 
4. Ba,3 < Ba,4 < Ba,3 + 2Bp.  

limited. The field at which the filament becomes completely penetrated is called the 
penetration field Bp, and is equal to: 

 B
J d

p
C f

=
µ

π
0

   [T] , (3.1) 

for round and isotropic filaments, with JC the critical current density in the filament and df 
the filament diameter. The field Bp is therefore the maximum field produced by the 
screening currents. The magnetisation, defined as the magnetic moment per unit volume, of 
a fully penetrated round filament is: 
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When the applied-field change &Ba  reverses its sign, the filament reacts again by screening 
the field, so that a new contour will appear in the outer region. A further change of the 
applied field will change the screening current density from +JC to -JC (and the other way 
around), so that the field is completely penetrated after a change of 2Bp in the applied field 
(see Fig. 3.1a). A characteristic magnetisation loop is shown in Fig. 3.2 in the case of a 
filament with a penetration field of about 0.1 T at small fields and 0.05 T at Ba=0.5 T.  
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Figure 3.2. Magnetisation loop of a filament without transport current subject to a field cycle 0-0.5 T-0-

0.5 T. The labels correspond to the magnetisation pattern as shown in Fig. 3.1a.  

In high-field magnets, the central field is cycled between the fields B1 and B2 where 
∆B=(B2-B1) is far larger than Bp (which is of the order of 10-100 mT for multifilamentary 
NbTi conductors). Therefore, most of the filaments in the strands remain fully penetrated 
during the field sweep and the magnetisation as given by eq. 3.2 varies according to the 
variation of the critical current with the field. A large magnetisation at the start of the ramp 
leads to large relative field distortions. Because the particles have to be injected at a small 
field Binj, the filament size has to be small in order to reduce these field errors. The field Binj 
has to be approached coming from a smaller field so that the magnetisation of the filaments 
does not reverse sign at the start of the ramp. Reduction of additional field distortions, 
caused by coupling currents and a non-uniform current distribution among the strands (see 
chapter 7), impose a more complicated field cycle before and during injection. 
 The hysteresis loss per cycle and per unit volume is given by the area enclosed within 
the hysteresis loop in the MB plane for zero frequency: 

 Q M B dBhys a a= −∫ ( )    [Jm-3/cycle] . (3.3) 

For a field cycle between B1 and B2 (with 0 < B1 < B2 < 3 T), the critical current density is 
represented by means of the Kim relation JC (B)=J0 B0 /( |B|+B0) (see section 2.4) so that:  
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The filament magnetisation for an applied field parallel to the filament is [Niessen, ’93]: 

 M J d BC f a|| ,|| ,||sgn( & )=−
1

6
   [Am-1] , (3.5) 

but will be disregarded in this chapter since, in most applications, the angle between the 
applied field and the filament axis is close to 90°. 
 An additional transport current causes a decrease of the penetration field (see Fig. 3.1b) 
by a factor (1-(Itr /IC)2)=(1-(Jtr /JC)2) [Rem, ’86], with Jtr the average current density in the 
filament. The magnetisation and the hysteresis loss are consequently reduced by the same 
factor for large field variations compared to the penetration field.  
 However, in the presence of a varying applied field, the transport current also causes an 
additional loss component which can be represented by a dynamic resistance 
[Druyvesteyn, ’67], and results in an axial electric field over the filament [Hartmann, ’89]: 

 E
d

B J Jdyn
f

a tr C=
4

3π
& ( / )    [Vm-1]   for Jtr < JC . (3.6) 

The additional loss component Jtr Edyn is supplied by the current source and not by the 
external field, and can be expressed by: 
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π
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The total energy loss Qhys (i.e. the work done by the external field and the current supply) 
for a filament carrying a transport current and for field oscillations well above the 
penetration field is therefore (combining eqs. 3.2, 3.3 and 3.7): 
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i.e. a factor (1+(Jtr /JC)2) larger than the loss as given by eq. 3.3 for a filament without 
transport current. 
 In the case of a filament carrying an AC transport current and subjected to a varying 
external field an additional loss component is present due to the varying self-field. In a 
magnet where the total field is achieved through the use of small diameter wire or 
multistrand conductor, the self-field variation is small compared to the external-field 
variation arising from the rest of the turns. Hence, the self-field loss does not make a 
substantial contribution to the total loss and is disregarded here. 
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An accurate value of the hysteresis loss for field variations ∆B of the same order or smaller 
than Bp is calculated with a numerical model in which the cross-section of the filament is 
divided into discrete subregions, carrying either zero current or the critical current density. 
The variation in the external field and the transport current are represented by discrete steps. 
For each step the current in the subregions is calculated iteratively, since not only the 
external field but also the field generated by the other subregions determines the critical 
current of a subregion. A detailed description of this procedure is given elsewhere 
[Hartmann, ’89]. 
 The screening currents are often referred to as persistent currents as they can only be 
removed by driving the filament from the superconducting into the normal state. The 
persistent currents result in a residual field which increases with increasing filament 
diameter and increasing JC (i.e. decreasing field or temperature). In accelerator magnets it is 
mainly this residual field that determines the acceptable filament diameter since the relative 
field errors can become large, especially at weak excitation. Since a high critical current 
density is required to have an efficient design, a decrease in the filament diameter is 
necessary for reducing the persistent currents.  
 A decrease in the filament diameter is often coupled with a decrease in the spacing b 
between the filaments. In the case of NbTi embedded in a copper matrix a spacing below 
about 1 µm results in the so called ‘proximity coupling’ between neighbouring filaments. 
This proximity coupling is basically a tunneling of the Cooper pairs through the copper 
matrix and results in an enhanced effective diameter of the filament at low magnetic fields. 
Hence, a certain optimum in the filament diameter occurs for which the persistent currents 
are minimum. Measurements on SSC dipole magnets have shown that for a filament 
diameter of about 4 µm the residual field is smallest, at a central field of 0.33 T and a ratio 
b/df = 0.2 [Green, ’87]. 

3.3 The JC -B relation 
Eq. 3.2 shows that the magnetisation of a fully penetrated filament is proportional to the 
critical current density. The JC -B relation of a superconductor can therefore be determined 
by measuring the magnetisation in an external varying magnetic field. The cold part of the 
test set-up by which these magnetisation measurements are performed is shown in Fig. 3.3.  
 It consists of a concentric set of four pick-up coils that can be inserted in a 
superconducting solenoid providing an AC field of 0.6 T maximum. The magnetisation is 
measured on a ring-shaped sample (with a circumference of 130 mm maximum) inserted 
between the two upper pick-up coils. This ensures that both the inductive voltage and the 
empty coil effect are minimum. The pick-up coils are wound from a superconducting wire 
and are connected to a small superconducting sensing coil. The current in the circuit is 
proportional to the time integral of the pick-up voltage. The circuit can be regarded as a flux 
transformer, where the flux change in the pick-up set, due to the magnetisation of the 
sample, is transferred to the sensing coil. The flux in the sensing coil is measured using a 
Hall probe which is placed inside a superconducting PbBi shield, in order to exclude the 
stray field of the solenoid and other magnetic disturbances.  
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Figure 3.3. The cold part of the measuring system where the voltage of the Hall probe is a measure of the 
magnetisation of the sample.   

Two heaters are present to enable a reset of the magnetic shield and the flux transformer in 
case flux has penetrated through the shield or is trapped in the flux-transformer circuit. 
 Characteristic measured magnetisation loops of two cables are shown in Fig. 3.4, 
including calculated magnetisation loops assuming the Kim relation for JC (B) (see eq. 2.16) 
with J0 and B0 as fit parameters.  
 Especially the cables with a small filament diameter, namely I-2 and I-4 (see Table 2.4), 
show a relatively large increase of the magnetisation for small fields compared to the 
calculated magnetisation. The enhancement is attributed to the proximity effect which can 
be regarded as an increase of the effective filament diameter as explained before. This 
results in a discrepancy between the experimental results and the calculated magnetisation 
since the proximity effect is not incorporated in the numerical model.  
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Figure 3.4. Magnetisation loops (bold lines) of cables I-1 and I-4 (see Table 2.4) subject to a sinusoidally 

oscillating field with an amplitude of 0.6 T and a frequency of 0.02 Hz. The thin lines are 
best fits, numerically calculated using the Kim relation for JC (B).   

The peak in the magnetisation curve is always slightly displaced from the origin as the 
internal field is not zero, due to the screening currents. The displacement increases for 
increasing filament diameter and critical current density.  
 
The JC -B relation of the filament (without the matrix) is determined by fitting the 
numerically calculated magnetisation (using the Kim relation for JC (B) as given in eq. 2.16) 
to the experimentally determined magnetisation between 0.3 and 0.6 T. The results in terms 
of the fit parameters J0 and B0 are given in Table 3.1. The fit is at least valid in the field 
range from 0.3 to 0.6 T. 

Table 3.1. Survey of the constants J0 and B0 of the Kim relation for several samples obtained by fitting 
the magnetisation loops with an amplitude of 0.6 T. The indicated critical current density at 
0.6 T is the average current density over the cross-section of the strand. 

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
  I-1 I-2 I-3 I-4 O-2 

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
 J0 (1010 Am-2) 3.0 3.1 2.3 3.7 4.5 
 B0 (T) 0.31 0.32 0.30 0.30 0.35 
 JC at 0.6 T, 4.2 K (109 Am-2) 3.8 4.1 2.6 4.7 5.9 

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
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3.4 Interfilament coupling currents 
The presence of a matrix results in the flow of coupling currents between the filaments of a 
strand when it is exposed to a changing magnetic field. Contrary to a normal conductor, 
specific current paths occur which are mainly determined by the boundary condition of 
almost zero electric field along the centres of the non-saturated filaments. The current paths 
are closed across the normal conducting matrix in which the heat is generated.  
 The interfilament coupling loss (IFCL) can be calculated using an anisotropic continuum 
model [Carr, ’74] based on solving Maxwell’s equations. Here another approach, proposed 
by Morgan, is followed based on the calculation of the induced currents between two 
twisted filaments in a strand [Morgan, ’70]. The strand is assumed to have a circular cross-
section with diameter ds in which the filaments are arranged in concentric layers. Two 
filaments of the outer concentric layer, with diameter ds

*, are shown in Fig. 3.5. 

 
Figure 3.5. Cross-section of a strand and schematic view of a current path RQPUTS in which an 

electromotive force is generated due to an external applied-field variation.  

If the strand is subjected to a varying magnetic field &Ba  in the x-direction, a field change &Bi  
is induced by the interfilament coupling currents (IFCCs), so that the total field change &B s  
in the interior equals: 

 & & &B B Bs a i= +    [Ts-1] . (3.9) 

The homogeneous &Ba  over the whole cross-section will result in a homogeneous &Bi , 
parallel to &Ba , and thus in a homogeneous &B s . The induced voltage Uind (z) is obtained from 
the surface RQPUTS: 
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with Lp,f the twist pitch of the filaments and ϕ = (π /2-2πz /Lp,f ).  
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Since there is no voltage drop along the superconducting filament, the voltage of any 
filament with position ϕ in a cross-section relative to the z-axis is: 

 U U z
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p f s s( ) ( )

&
cos( ),

*

ϕ
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ϕ= − =
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⎝
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⎞

⎠
⎟

1

4 2 2
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Since x= ds
*cos(ϕ )/2 the voltage will give rise to a homogeneous electric field parallel to 

&Ba : 

 E B||
, &= −

Lp f
s2π

   [Vm-1] . (3.12) 

The z-component of the electric field, which is present due to the twist angle, is not taken 
into account. Since E|| is independent of ds

* the solution holds for all filaments and therefore 
also for the complete strand. The electric field E|| creates a current density J|| flowing across 
the strand parallel to &B s : 
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with ρeff the effective transverse resistivity which depends on the filling factor η as 
[Carr, ’75]: 
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whenever the filaments do or do not contribute to the transverse conduction respectively. 
The resistivity ρmat denotes the transverse resistivity of the matrix. 
 The current density J|| gives rise to a coupling power loss per unit volume: 
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The outer layer of filaments act as a return path for J|| so that the collected current If in the 
filaments (using the continuity of current) satisfies: 
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Integration results in the induced axial surface current density If (ϕ) in the z-direction: 
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Assuming that the current flows through the outer layer of filaments at radius ds
*/2, the total 

current Iif flowing at either side of the strand (positive at one side and negative at the other 
side) equals: 

 I I d d
L d B

if f s
p f s s
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Since If (ϕ ) varies with sin(ϕ ), a uniform dipole-field Bi in the interior of the strand is 
generated parallel and opposite to &Ba : 
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The constant of proportionality τif is called the time constant of the IFCCs, and defined by: 
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The time constant increases by a factor of about 1.27 for square strands [Campbell, ’82] and 
by a factor [1+(π ds /Lp,f )2] if the z-component of the electrical field is also taken into 
account (which is about 1.02 for a characteristic ratio ds /Lp,f =0.05).  
 
Combining eqs. 3.9 and 3.19 gives the relation between the applied field and the internal 
field by means of the differential equation: 

 & &B
B

Bi
i

if
a+ = −

τ
   [Ts-1] .  (3.21) 

The energy loss Qif per cycle and per unit volume is determined by integration of eq. 3.15. 
For a sinusoidally oscillating applied field: 

 B B ta a
m= cos( )ω    [T] , (3.22) 

with amplitude Ba
m  and angular frequency ω�= 2π f, the energy loss equals: 
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Using the anisotropic continuum model, a basically identical relation is obtained [Carr, ’74].  
 More generally, the factor 2 in eq. 3.23 should be replaced by the shape factor n, which 
is equal to 2 for round and square wires. In the case of rectangular strands with a cross-
section a⋅b where a >> b, n = 1 for &Ba  applied perpendicular to b and n = a/b for &Ba  applied 
perpendicular to a [Campbell, ’82].  



54  Chapter 3 

At low field amplitudes the magnetic moment of the filaments is large and the filaments can 
even become perfectly diamagnetic. In this case the strand should be treated as a material 
with an effective permeability [Campbell, ’82]: 
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+ −
= − =
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2 1
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with λ the copper-to-superconductor ratio. This results in a decrease of the time constant to 
τif,eff =µeff τif (where τif is the time constant when the filaments are completely penetrated), 
and in a decrease of the coupling power loss by a factor µeff. So the energy loss equals: 
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and is significantly smaller compared to eq. 3.23 at low frequencies (ωτif <<1). 
 The above-mentioned relations are valid as long as the currents in the filaments in the 
outer layer do not exceed the critical current. Beyond this limit the filaments become 
saturated and the excess currents have to return via the filaments in the more inner layers, 
which causes a decrease in the induced magnetic field Bi. The losses in a multifilamentary 
strand can therefore be classified in three frequency ranges: 
• Low frequency, ωτif <<1. The inside of the strand is subjected to the external field since 

the screening by the IFCCs is very small. The hysteresis loss can be treated 
independently of the IFCL. 

• Intermediate frequency, ωτif ≥1. The inside of the strand is partially shielded by the 
IFCCs but the fields are still uniform. Due to the screening, the hysteresis loss is smaller 
than in the low-frequency range. 

• High frequency, ωτif >>1. The inside of the strand is almost completely shielded since 
the applied field penetrates only a thin skin of the strand. The hysteresis loss approaches 
zero because only the outer layers of filaments are subjected to a field change. 

 
As τif is typically of the order of 10-100 ms, especially the first frequency range will be of 
interest in the case of the slowly varying fields which are present in accelerator magnets. 
Therefore, the decrease of the hysteresis due to the screening of the IFCCs is not discussed 
here, but an extensive treatment can be found in the literature [Pang, ’80]. 
 
The characteristic distribution of the IFCCs over the cross-section of the strand is depicted 
in Fig. 3.6. Three different regions (besides the normal conducting core and outer shell) can 
be distinguished: 
− region I: the filaments are completely saturated, 
− region II: the filaments are partially saturated, 
− region III: the filaments do not carry any IFCCs. 
As a result, the transport current can only flow in region III, since a transport current 
flowing in region II would also pass through region I (due to the twist), thereby generating 
an additional loss. 
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Figure 3.6:  Current distribution in a wire without transport current, subject to a varying magnetic field, 

indicating three different regions: I. the filaments are completely saturated by the IFCCs, II. 
the filaments are partially saturated by the IFCCs, III. the filaments carry no IFCCs. The 
current profile is calculated by disregarding the influence of the central core.  

The calculated diameter dIII of region III, where the filaments do not carry IFCCs and after 
disregarding the inner core [Klundert, van de, ’90], equals: 
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Hence, the maximum transport current Itr,str,max in a strand is not only a function of the 
temperature and the applied magnetic field but also of the rate of change of the magnetic 
field. As the boundaries of the three regions are not influenced by a transport current 
[Hartmann, ’89], Itr,str,max can be expressed by: 

 I B B T I B T d dtr str a a C str a III s, , ,
*( , & , ) ( , )( / )max = 2    [A] , (3.27) 

which corresponds to within 5% with a more complicated relation given by Hartmann. 
Experimental results are in agreement with the above-mentioned expression [Rem, ’85], 
[Roovers, ’86]. Eq. 3.27 can be rewritten in terms of τif using eqs. 3.20 and 3.26: 
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In sections 3.5 and 8.2.1 the relation is applied to estimate the decrease of the maximum 
transport current due to the IFCCs. 
 
Practical conductors are often subdivided into several regions. A very common lay-out 
consists of the following three concentric layers with volume fractians v1, v2 and v3 
respectively (see Figs. 2.9a and 3.6): 
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− a central core of normal-conducting material with resistivity ρ1 , 
− a ring filled with many filaments in a matrix with resistivity ρ2=ρeff , 
− an outer shell of normal-conducting material with resistivity ρ3 . 
Characteristic values for v1, v2 and v3 for NbTi strands for accelerator magnets are 0.15, 0.75 
and 0.10 respectively. The loss contributions of each layer for ωτif <1 can be summarised by 
[Kate, ten, ’94]:  
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For ρ1=ρ2=ρeff, the subdivision in regions decreases the IFCL of the LHC strands by a 
factor of about 0.9 compared to eq. 3.15. If the filaments contribute to the transverse 
resistivity (see eq. 3.14), the decrease is a factor of about 0.8 for η =0.35. 

3.5 Interfilament time constants 
The measurement set-up as described in section 3.3 is used to evaluate the IFCL of a cable, 
determined by the increase of the area of the M-B curve for higher frequencies. The field is 
applied parallel to the cable width (θ =ϕ =90°, see Fig. 4.1). This implies that the 
magnetisation is mainly determined by the hysteresis of the filaments and the interfilament 
coupling while the interstrand coupling is negligible, even for relatively low interstrand 
contact resistances (see section 4.4.1). Magnetisation loops of cable I-2 are shown in 
Fig. 3.7 for several frequencies.  
 At higher frequencies f=ω /2π the curves become more and more elliptical with a phase 
shift between the internal field and the external field (according to eq. 3.21), equal to 
arctan(ωτif).  
 
A more accurate method to determine the time constant τif is by calculating the total energy 
loss per cycle: 

 Q Q Qtot hys if= +    [J/cycle] , (3.32) 

by the surface of the M-B curve, as a function of the frequency (see Fig. 3.8). The time 
constant can be deduced from the maximum of the Qtot -f relation. Note that the hysteresis 
loss decreases at higher frequencies due to the screening of the IFCCs which results in a 
shift of the maximum of the curve to slightly lower frequencies. The apparent increase of τif 
could be significant when the IFCL is small compared to the hysteresis loss.  
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Figure 3.7. Magnetisation loops of cable I-2 exposed to an oscillating applied field with amplitude 

Ba
m = 0.6 T at frequencies of 0.01, 0.1, 0.25, 0.5 and 0.75 Hz (without transport current).  
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Figure 3.8. Characteristic Qtot -f relation for conductors which exhibit hysteresis loss and IFCL. A 

frequency-dependent hysteresis loss is assumed [Pang, ’80]. Note that the apparent time 
constant calculated from the maximum of the Qtot -f curve, increases due to the screening of 
the interior of the strand by the IFCCs.  

Here nτif is determined from the slope of the Qtot -f relation for f→0 according to eq. 3.25 
assuming µeff =1. The Qtot -f relation of various samples exposed to a field sweep from -0.6 
to 0.6 T is shown in Fig. 3.9. Table 3.2 shows a survey of the τif -values of the samples 
assuming n=2.  
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Figure 3.9. The total energy loss of various cables as specified in Table 2.4 exposed to a field sweep 

between -0.6 and 0.6 T at frequencies between 0.02 and 1 Hz.   

The ratio dIII /ds
* as calculated using eq. 3.26 for n=2, &Ba =0.1 Ts-1 and IC =500 A is also 

given. The corresponding decrease of the maximum transport current (according to 
eq. 3.27) is smaller than 1% at &Ba =0.1 Ts-1 and smaller than 0.05% at &Ba =0.0066 Ts-1, the 
average field-sweep rate during excitation as foreseen for the LHC dipole magnets, and will 
therefore not affect the maximum operation field in the magnets. In practice the decrease is 
even smaller since IC,str increases if the transport current decreases (see also section 8.2) and 
because the time constant decreases at higher fields due to the magnetoresistance of the 
matrix. 

Table 3.2. Survey of the τif -values of several cables as deduced from the slope of Qtot -f relation with 
Ba

m = 0.60 T and assuming n = 2. The calculated relative decrease i of the maximum transport 
current is included for a field-sweep rate of 0.1 Ts-1 (with IC,str = 500 A).  

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
  I-1 I-2 I-3 I-4 O-2 

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
 τif (ms) 29 23 26 24 32 
 dIII/ds

*  at 0.1 Ts-1 (mm) 0.997 0.998 0.997 0.998 0.999 
 i at 0.1 Ts-1 0.994 0.995 0.995 0.995 0.997 

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
 
In order to investigate the influence of adjacent strands on the hysteresis loss and IFCL, 
individual strands are removed from cable I-4 and kept in the original shape they have in the 
cable. The sample is referred to as I-4o. 
 Fig. 3.10 shows the ratio of the energy loss per cycle per volume between I-4 and I-4o as 
a function of the frequency.  In the case of a large Ba

m  (compared to the penetration field) 
and low frequencies, the field produced by the neighbouring strands is small compared to 
the applied field and the ratio approaches 1.  
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Figure 3.10. The energy loss (per unit volume) of the cable I-4 divided by the energy loss (per unit 

volume) of a strand in the ‘cable shape’ I-4o as a function of the frequency for several 
amplitudes of the applied field.   

For small Ba
m  the field produced by the persistent currents of the neighbouring strands is not 

negligible compared to the applied field and the demagnetisation of the cable becomes 
relevant, resulting in a ratio smaller than 1. Considering larger frequencies, the additional 
field produced by the IFCCs (being opposite to the applied field), reduces the total field, 
especially in the centre of the cable. This implies an even stronger decrease of the loss in the 
cable compared to the loss in individual strands. 
 
The field variations in accelerator magnets are large and quasi DC; for example, the 
characteristic ramp for the LHC dipole magnets corresponds to a field sweep of about 8 T in 
20 minutes. Even the fast de-excitation with a time constant of 100 s can be classified in the 
ωτif <1 regime. Hence, the hysteresis loss and IFCL in accelerator magnets can be directly 
determined by the losses in a single strand, and are not affected by the field produced by the 
persistent currents and IFCCs in the neighbouring turns. 

3.6 Conclusions 
Filament hysteresis and interfilament coupling are the main sources of loss inside a strand 
which is exposed to a varying magnetic field. The two loss components can be well 
separated by determining the magnetisation vs. frequency in the range ωτif <1. In the case of 
larger frequencies the interior of the strand becomes partially or almost completely shielded 
by the screening currents and the hysteresis is no longer independent of the frequency. An 
additional transport current increases the hysteresis loss by a factor (1+(Jtr /JC)2).  
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The strand losses (per unit volume) in an LHC-type NbTi cable are identical to the losses in 
a single strand (per unit volume), under the same conditions, if the applied field amplitude is 
large (compared to the penetration field) and the frequency is small (<1/(2πτif )). In the case 
of small field amplitudes and/or high frequencies the demagnetisation of the cable will 
cause a considerable decrease of the losses. The strand losses in dipole magnets, subject to a 
central-field sweep, which is large compared to the penetration field, can therefore be 
succesfully estimated by a loss measurement on a single strand. 
 The mean time constants τif of the interfilament coupling currents for various cables 
used in the LHC dipole model magnets are between 23 and 33 ms. The corresponding 
decrease in the maximum transport current due to the the IFCCs during the field sweep from 
injection to operating field in LHC magnets will be smaller than 0.05% (not taking into 
account the possible temperature increase of the cable due to the loss). 
 


