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Chapter 5 

Boundary-induced coupling 
currents 
In this chapter it is shown that spatial distributions in the field-sweep rate &B  
and in the contact resistances Ra and Rc along the length of a Rutherford-type 
cable provoke a non-uniform current distribution during and after a field 
sweep. The process is described by means of Boundary-Induced Coupling 
Currents (BICCs) flowing through the strands over lengths far larger than the 
cable pitch. The BICCs are represented by a characteristic length, time and 
propagation velocity.  
 Several longitudinal distributions of &B  and Rc are considered which are 
present or likely to be present in accelerator magnets. Attention is especially 
focused on the cable-to-cable connections and the coil ends, where the cable 
bends around the beam pipe.  
 The dependence of the characteristics of the BICCs on the strand 
resistivity and the contact resistance between strands is calculated.  
 It is shown that BICCs are always present in coils made of cables with 
non-insulated strands and it is discussed whether Rc- or &B -variations are the 
dominant cause.  
 The BICCs are evaluated by means of a novel experiment in which a 1.3 m 
long Rutherford-type cable is exposed to a local field variation. The results 
clearly demonstrate the existence of BICCs and validate the use of the 
network model for calculating them. 
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5.1 Introduction 
In chapter 4 the ISCCs are dealt with in the case where the &B -variation along the length of 
the cable is uniform. However, in all magnets a certain spatial variation of the field is 
present along the length of the cable and hence a spatial variation of &B  during a field sweep. 
In this chapter only variations in &B⊥ (i.e. the field change normal to the large face of the 
cable, see eq. 4.1) are considered since the magnitude of the interstrand and boundary-
induced coupling currents is mainly affected by this component. 
 As an example, the field change &B⊥ (in the centre of the cable) along the length z of the 
cable in a 1 m long LHC dipole magnet is shown in Fig. 5.1 for a central-field-sweep rate of 
0.0066Ts-1. Only the cable of the inner coil of one pole, having 13 turns, is shown with a 
total length of about 25 m (see also Figs. 2.2b and 2.3). 
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Figure 5.1. The field change &B⊥  along the length of the cable of the inner coil of one pole of a 1 m long 

LHC dipole magnet with a 50 mm aperture. The field change is the average field change in 
the centre of the cable. The central-field-sweep rate is 0.0066 Ts-1. The labels indicate the 
block numbers (see Fig. 2.2b).   

The sharp decreases in &B⊥ correspond to those parts in the coil where the cable bends 
around the beam pipe. The position z=0 denotes the end of the current lead. Part of the 
curve (2.1 m<z<6.2 m) is enlarged in Fig. 5.2 in which &B⊥ at three different places across 
the cable width is depicted versus the scaled axial position of the cable. The spatial &B⊥-
distribution can be separated into two regimes: 
• Strong variations for which |∆ &B⊥/∆z| is of the same order as | &B⊥ ,max /Lp,s |, with ∆ &B⊥ the 

change in &B⊥ over the longitudinal length ∆z and &B⊥ ,max the maximum field change. An 
example is the average &B⊥-variation between z=20Lp,s and z=21Lp,s (see Fig. 5.2) where 
|∆ &B⊥/∆z|= | &B⊥ ,max /Lp,s |=0.0053/0.13=0.04 Ts-1m-1. 
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Figure 5.2. The field change &B⊥  along the scaled length of the cable of a 1 m long LHC dipole magnet 

with a 50 mm aperture. The field changes at three radii are shown (see Fig. 2.2a) for several 
turns of block 3 (B3). The central-field-sweep rate is 0.0066 Ts-1 and Lp,s is equal to 0.13 m.   

• Weak variations for which |∆ &B⊥/∆z| is much smaller than | &B⊥ ,max /Lp,s |. An example is 
shown in Fig. 5.1 for the average variation of the field in the entire inner coil of the 
magnet, where |∆ &B⊥/∆z|=0.0025/24=1⋅10-4 Ts-1m-1 while | &B⊥ ,max /Lp,s |=0.0053/0.13 
=0.04 Ts-1m-1. 

In accelerator dipole and quadrupole magnets both cases are present whereas, for example, 
in solenoid magnets mainly weak variations occur. 
 Besides spatial distributions of &B⊥ spatial distributions of Rc are also present in an 
accelerator magnet. In section 4.6 the case of a varying Rc across the cable width was 
discussed, which is due to the keystone angle and the gradient in the transverse pressure P⊥ 
across the cable width. However, variations in Rc along the cable length also occur and can 
be separated in: 
• Variations over lengths far larger than Lp,s which are present in the entire cable since the 

transverse pressure varies considerably over the cross-section of the coil. Measurements 
of the contact resistances, performed on several sections of the inner coil of two SSC 
dipole model magnets, have shown that the contact resistances could vary by more than 
one order of magnitude over the turns of one coil [Kovachev, ’93a/b,’94].  

• Variations over lengths up to a few cable pitches which are present:  
− in the coil ends where the transverse pressure P⊥, that strongly influences Rc, on the 

cable varies significantly; analysis of the cross-sections of coils has shown that in 
these parts of the magnet the average contact area between strands reduces to almost 
zero, 

− in the soldered connections between different cables in the magnet, 
− in local ‘shorts’ between strands. 
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Recently, the influence of spatial &B⊥- and Rc-distributions on the coupling currents in 
Rutherford-type cables was also treated by Akhmetov et al., showing that the coupling 
currents Is and Ic vary periodically with a period equal to the cable pitch 
[Akhmetov, ’93a/’94/’95].  
 Egorov also concluded that the coupling currents and power can increase substantially 
due to the axial &B⊥-variations although, under certain conditions, it can be imperceptible as 
well [Egorov, ’94]. The coupling currents can increase up to magnitudes that, in 
combination with the transport current, saturate the strand and cause a quench or initiate a 
current redistribution.  
 Also Krempasky and Schmidt have recently shown that non-uniform &B -distributions 
provoke additional coupling currents exhibiting very long time constants 
[Krempasky, ’95a/b]. Their approach was based on the solution of the diffusion equation 
which they applied to a two-wire configuration coupled through a transverse conductance. 
 An analytical solution of the decay of current loops as a function of time is given by 
Akhmetov et al. under weak and strong excitation levels [Akhmetov, ’93b]. Computations 
are made in the case of an SSC dipole magnet, showing that the time constant under weak 
excitation can be as large as 106 s and decreases strongly if the transport current reaches 
90% of its critical value.  

The above-mentioned approaches demonstrate qualitatively that non-uniformities in the 
magnetic flux or cross-contact resistances always results in periodically varying coupling 
currents. In this chapter calculations are performed to investigate the current pattern caused 
by longitudinal &B⊥- and Rc-variations more systematically. The calculations are made using 
the network model of a Rutherford-type cable as described in detail in section 4.2. 
Additional assumptions which are used in the simulations are given in section 5.3. The 
current patterns are evaluated by means of a new type of current, the so called ‘Boundary-
Induced Coupling Current (BICC)’, and illustrated in section 5.4.1. The term ‘boundary’ 
indicates that BICCs are generated by geometrical boundaries, boundaries in &B  and internal 
boundaries such as changes in Ra and mainly Rc. The BICCs differ from the ISCCs with 
respect to: 
− the length over which they flow in the strands, represented by a characteristic length ξ, 
− the characteristic time τbi which they exhibit, 
− the propagation velocity vbi , 
− the magnitude Ibi,0 . 

In sections 5.4.1-5.4.4 the results are presented for a straight cable subject to a single ‘ &B⊥-
step’, which implies that one part of the cable is exposed to a field variation &B⊥ while the 
other part is not. Several formulas are presented by which the characteristic time and length 
of the BICCs can be estimated. In order to draw conclusions with respect to an entire coil, it 
is shown in section 5.4.5 how the results of a single &B⊥-step can be applied to estimate the 
BICCs in a cable subject to an arbitrary longitudinal &B⊥-variation.  
 In section 5.5 special attention is paid to the case of a cable which is partially exposed to 
a varying field. It is shown that the BICCs can cause a significant enhancement of the 
coupling power loss. The large characteristic lengths of the BICCs cause the loss to be also 
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dissipated in those parts of the cable which are not exposed to the local &B⊥. In section 5.6 
the case of a cable is investigated with Rc>>Ra simulating, for example, a cable with a 
resistive barrier between the two layers. In section 5.7 the BICCs are calculated for a cable 
that is exposed to a uniform &B⊥ but has a local Rc-variation. The calculations are especially 
useful for understanding the influence of Rc-variations in the coil ends and cable-to-cable 
connections on the magnitude of the BICCs.  
 In section 5.8 a novel measurement set-up is described for investigating the BICCs in a 
straight Rutherford-type cable, subject to a local &B⊥, by scanning the magnetic field along 
the cable length. The experimental results are compared to the calculations in order to 
understand the pattern of the BICCs and to validate the simulations.  
 In the next section the case of a cable with insulated strands is briefly discussed, since 
the current distribution has a certain resemblance to the current distribution as produced by 
the BICCs.  

5.2 Cables with insulated strands 
The current in each strand of a multistrand cable with insulated strands is constant through 
the total length of the cable. The current distribution in the cable subject to a homogeneous 
field can be easily derived since the current distributes itself among the strands in such a 
way that the voltages over all the strands of the cable are equal. The voltage over strand i 
consists of a resistive and an inductive part, and is given by: 
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with Istr the strand current, Rser the series (or joint) resistance of the transfer length near the 
current leads, ρs the strand resistivity, lstr the length of the strand, Astr the cross-section of 
the strand and Mij the mutual inductance between strands i and j. This analytical approach 
can be used if the cable (with insulated strands) is subjected to a constant field (change) and 
is ramped without generating a large self-field compared to the field produced by the other 
turns. The transfer length consists of: 
− the transfer across the copper of the current lead, the solder and the outer copper sheath 

of the strand (until the outermost layer of filaments), 
− the transfer from the outermost layer of filaments to the more inner layers. 
In general the first transfer traject is the major contribution to the resistance and the joint 
resistances can differ by a large amount. Eq. 5.1 shows that, once all the currents are 
stabilised (so that the inductive term can be disregarded), the current is distributed 
according to the relative values of the series and strand resistances. Hence, the distribution 
can strongly depend on: 
− the current level because the strands can have a different voltage-current relation, 
− the external field since the contact resistances can be magnetoresistive. 
The strand currents under DC conditions always differ somewhat as it is impossible to 
achieve exactly the same soldering [Faivre, ’81].  
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The contribution of the joint resistance Rser and the strand resistance Rstr to the total 
resistance Rtot is examined in the case of a dipole magnet. Therefore, both Rser and Rstr are 
calculated for the inner coil of a 1 m long PBD magnet (see Table 2.1).  
• The joint resistance. The resistance of the soldered connection with length Lp,s between 

two Rutherford-type cables is typically 0.4 nΩ. For a 26-strand cable this implies about 
10 nΩ on both ends of the strands, so in total 20 nΩ per strand. 

• The strand resistance. Since the field (and hence the critical strand current) varies 
strongly over the cross-section of a magnet, the strand resistance has to be determined 
by integration along the total length lstr of the strand: 

 R
A

I dzstr
str
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i

tr str

lstr

= ∫1

0
ρ ( ),    [Ω] , (5.2) 

with Astr the cross-section of the strand. The power law of the voltage-current relation 
(see eq. 4.8) is used to describe the current dependence of ρs . Fig. 5.3 shows Rstr as a 
function of the transport current for several n-values in eq. 4.8 (assuming ρs=10-14 Ωm 
at Itr,str= IC,str). In the case of an operation current that is 90% of the critical current the 
resistance Rstr is about 10-6 to 10-1 nΩ for n=30 and n=10 respectively. 

 
At weak excitation levels the current distribution is dominated by the joint resistance 
whereas only for currents very close to the critical current does the strand resistance have to 
be taken into account, especially for long magnets made of a cable having a small n-value. 
Also in the case of cables with non-insulated strands the current distribution under DC 
conditions will be given by the differences in joint resistances among the strands. 
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Figure 5.3. The resistance of the strands of an inner coil of a 1 m long LHC-type dipole magnet as a 

function of the scaled transport current for several n-values. Rstr is almost proportional to 
the length of the magnet. The series resistance of 20 nΩ, corresponding to two cable-to-
cable connections of 0.4 nΩ, is independent of the magnet length.   
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By changing the cable current, the strand currents will change according to their relative 
self- and mutual inductances. In the case of fully transposed cables, in which each strand 
has the same self- and mutual inductances with the other strands, the ramping of the total 
current will not affect the differences between the strand currents already created under DC 
conditions, if of course Rser and ρs remain constant. In practice, however, a change of the 
current also causes a change of the field, and the strand resistivity can increase significantly 
due to the dynamic resistivity (see eq. 3.6): 
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with &B s⊥  the field change normal to the strand axis (disregarding the small twist angle of the 
filaments). The dynamic resistivity can easily be larger than the resistivity ρs under DC 
conditions. For example, ρdyn=10-15 Ωm at &B s⊥ =0.1 Ts-1 (for df=10 µm, ds=1.3 mm and 
IC,str=1000 A), while ρs=10-16 Ωm at Itr,str=0.8IC,str (for n=20 and ρs=10-14 Ωm at 
Itr,str= IC,str). In a coil each strand of the cable has an almost equal dynamic resistivity, so that 
a field-sweep will not cause differences between the strand currents due to different ρdyn .  
 
Considering non-fully transposed cables (for example a 6 around 1 cable configuration), 
differences between the self- and the mutual inductances are present. During a current ramp, 
some strands will carry more current than others which can significantly decrease the 
quench current of such a cable if used in AC applications, see for example [Schermer, ’79], 
[Faivre, ’81], [Knoopers, ’85]. These time constants of the (re)distribution process of the 
currents depend on the series and strand resistances and on the self- and mutual inductances. 
The time constants are therefore current-dependent since Rser is magnetoresistive and Rstr is 
strongly current-dependent.  
 The current distribution in non-fully transposed cables is not further discussed since all 
the strands of a Rutherford-type cable have almost the same length. Small differences in the 
lengths of less than 0.1% can be present due to, especially, the coil ends but they hardly 
affect the current distribution.  

5.3 Simulating BICCs 
The network model, as extensively described in section 4.2, is used to calculate the BICCs 
in a Rutherford-type cable. The longitudinal coordinate of the cable is denoted by z. The 
cable lengths from z=0 to the ends of the cable are referred to as lcab,1, for z<0, and lcab,2, for 
z>0 (see Fig. 5.4). The end of the cable is either the physical end (with or without a cable-
to-cable connection) or a part where the strands are in the normal state (and hence have a 
relatively large strand resistivity).  
 Throughout the chapter the strand sections are denoted by the strand position (see 
Fig. 5.5) which is independent of the longitudinal position, while the (physical) strands are 
denoted by the strand number i. So, each strand will subsequently pass through all the 
strand positions. 
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Figure 5.4. Definition of the lengths in a cable.  

 

 
Figure 5.5. Numbering of the strand positions in the cross-section of a 16-strand Rutherford-type cable.  

At z=k⋅Lp,s (with k an integer), the strand numbers correspond to the strand position 
numbers. Hence, at z=0, strand 1 bends around the edge of the cable while at z=Lp,s /4 
strand 1 is located near the centre of the cable. 
 
The calculations are performed assuming that: 
− The strands in the cable have the same length. This implies that all strands have the same 

self-inductance, whereas the values of the mutual inductance depend on the relative 
position of the strands in the cable. 

− The strands have the same series resistances Rser. 
− The strand currents are smaller than the critical current (Istr< IC,str, i.e. the strands are not 

saturated) and the strand resistivity ρs is the same for all the strands and is assumed to be 
independent of the current in the strand. In the network model the strand resistivity is 
included by means of a resistance Rs between two nodes as given by eq. 4.11. 

− A non-uniform current distribution within the strand (due to persistent currents and 
interfilament coupling currents) is not taken into account. 

− Only the field change &B⊥ is considered because the field changes &||B  and &Bz  (see 
Fig. 4.1) turn out to have a much smaller effect. At a first approximation, the ratio of the 
magnitudes of the BICCs for &B⊥ and &||B  is equal to the ratio of the magnitudes of the 
ISCCs for &B⊥ and &||B  (see eq. 4.20).  

− The contact resistance Ra between adjacent strands is much larger than the contact 
resistance Rc between crossing strands (Ra>>Rc). Only section 5.6 deals with the 
specific case where Ra<<Rc, simulating the presence of a resistive barrier between the 
two layers of the cable. 

− In the ends of the cable the distribution of the ISCCs is given by the solution for a cable 
without longitudinal non-uniformities that is exposed to the local &B , which leads to the 
solutions obtained in section 4.4.1. Other boundary conditions, however, do not 
influence the results from a qualitative point of view.  
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The assumptions imply that the transport current is uniformly distributed among the strands. 
In the following the term ‘steady-state’ denotes the condition that the cable is exposed to a 
certain &B⊥-distribution for a time much larger than all characteristic times involved.  
 
Most of the simulations are performed by subsequently changing all the parameters in the 
network model, namely h, w, Lp,s, Ns, Rc, Ra, &B⊥ and ρs. The results are presented as 
analytical formulas that describe the dependence of the currents, time constants and decay 
lengths on the above-mentioned parameters. Therefore, each analytical relation contains one 
or more constants of proportionality that are needed to fit the numerical results to the 
analytical expressions. 
 Many simulations and, in particular, step-response calculations require a large-size 
matrix as shown in section 4.2. To reduce the computing time, the simulations are often 
performed on cables with only 8 or 10 strands. Also a large strand resistivity is used in order 
to decrease the length over which the BICCs decay (see section 5.4.2) and hence the matrix 
size. Extrapolation to cables with more strands and a small strand resistivity could therefore 
result in less accurate solutions. The estimated error in the constants of proportionality are 
given for each analytical expression.  

5.4 Cables exposed to a &B⊥-step 
The characteristic BICC distribution in a cable is illustrated in section 5.4.1 by means of a 
step increase in &B⊥ along the length of the cable. The magnitude of the BICCs as well as the 
characteristic length ξ are dealt with in section 5.4.2, the characteristic time τbi in 
section 5.4.3 and the propagation velocity of the BICCs in section 5.4.4.  
 
In section 5.4.5 it is shown how the solution of the BICCs for an arbitrary &B⊥-distribution 
can be obtained by considering it as a superposition of &B⊥-steps. Specific longitudinal 
variations, which are likely to occur in a magnet, such as: 
− &B⊥ which linearly increases from 0 to a certain value, simulating that part of a magnet 

where the cable enters the magnet,  
− &B⊥ which is small over a certain length of the cable, simulating the coil ends, where the 

cable bends around the beam pipe,  
can be treated by this approach. Field variations across the cable width only slightly change 
the distribution of the ISCCs (see section 4.7) but do not generate BICCs, and are therefore 
not dealt with in this chapter. 

5.4.1 Characteristic BICC pattern 
A 16-strand cable is considered (with Rc=1 µΩ, Ra=10 µΩ, ds=1.3 mm and Lp,s=100 mm) 
which is exposed to a field change &B⊥ of 0 for z<0 and 0.01 Ts-1 for z≥0. The transport 
current Itr,str in the strands is equal to 20 A.  
 The characteristic coupling-current pattern in the cable is illustrated by means of the 
current in a given strand as well as the current at a given strand position. Fig. 5.6 depicts the 
current in two strands (numbers 2 and 12).  
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Figure 5.6. The characteristic pattern of the strand currents in two strands of a Rutherford-type cable 

subject to field changes of 0 for z < 0 and 0.01 Ts-1 for z ≥ 0 (Regime A: ρs = 2⋅10-14 Ωm). The 
transport current is shown by a dotted line. The bold line shows the transport current and the 
BICC in strand 2 for z ≥ 0.   

The strand current can be regarded as a superposition of three components: 
− The transport current which is equal to 20 A all along the strand. 
− The oscillating term, with an average equal to 0, related to the ISCCs which are mainly 

present for z≥0. The maximum ISCC is about 7 A and corresponds to the ISCC for a 
cable without longitudinal variations (see eq. 4.20). The amplitude of the ISCC pattern 
remains constant for z≥0. 

− The BICC which is maximum close to the &B⊥-step and decays quasi-exponentially for 
z<0 as well as z≥0 with a characteristic length ξ , which is equal for all the strands. The 
magnitude of the BICCs can be different for z<0 and z≥0, as shown in Fig. 5.6 where 
the bold line represents the current in strand 2 corrected for the ISCC contribution. The 
difference depends on the strand number and its maximum is equal to the maximum 
value of the ISCCs. 

Fig. 5.7 depicts the same strand currents but now when ρs is much smaller. The contribution 
of the ISCCs remains the same. The BICCs, however, decay quasi-linearly towards zero 
instead of quasi-exponentially and their magnitude is much larger than in the previous case. 
 
Two regimes can be distinguished:  
Regime A. The BICCs decay quasi-exponentially along the length and approach 0 clearly 

before the end of the cable. In this case a characteristic length ξ of the BICCs 
can be defined as the length over which the BICCs decay to 1/e of their initial 
value. The length of the cable is at least several times ξ and the boundary 
conditions at the ends of the cable do not influence the magnitude and the decay 
length of the BICCs. 
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Figure 5.7. The characteristic pattern of the strand currents in two strands of a Rutherford-type cable 

subject to field changes of 0 for z < 0 and 0.01 Ts-1 for z ≥ 0 (Regime B: ρs = 2⋅10-17 Ωm). The 
transport current is shown by a dotted line.  

Regime B. The BICCs decay quasi-linearly towards the boundary values at the end of the 
cable, which therefore influence the decay. In general the boundary conditions 
impose that the BICCs are 0 at the ends of the cable. Different boundary 
conditions, however, will give a qualitatively similar behaviour but 
quantitatively different results. 

The intermediate regime, where the decay of the BICCs is somewhere in-between an 
exponential and a linear one, is not dealt with in this chapter. An estimate of the 
characteristics of the BICCs can be obtained by assuming a linear decay. In section 5.4.2 the 
parameters are discussed that define whether the BICCs decay quasi-exponentially or quasi-
linearly. 
 
In order to illustrate the current distribution in the cable more clearly, the strand current at a 
given strand position will now be analysed under the same conditions as applied in Figs. 5.6 
and 5.7. The strand current at the edge of the cable (position 1, see Fig. 5.5) is depicted in 
Figs. 5.8 and 5.9 for regimes A and B. Fig. 5.10 shows an enlargement of Fig. 5.8 for 
-2Lp,s<z<2Lp,s for two strand positions.  
 The average strand current at the edge is equal to Itr,str=20 A for z<0 and is about 13 A 
for z≥0 which corresponds to the sum of Itr,str and the ISCC (of about -7 A) for a cable 
without longitudinal variations shown as a bold line in Fig. 5.8. Hence, the strand current at 
a given strand position can be regarded as a superposition of: 
− the transport current, 
− an oscillating part from the BICCs, 
− the ISCCs of which the value depends on the strand position (see, for example, Fig. 4.6). 

This can be seen in Fig. 5.10 where the ISCC is about -7 A at position 1 while it is about 
0 at position 5. 
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Figure 5.8. The characteristic pattern of the strand current at position 1 of a Rutherford-type cable subject 

to field changes of 0 for z < 0 and 0.01 Ts-1 for z ≥ 0 (Regime A: ρs = 2⋅10-14 Ωm). The 
transport current is shown by a dotted line, and the ISCC by a bold line.  
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Figure 5.9. The characteristic pattern of the strand current at position 1 of a Rutherford-type cable subject 

to field changes of 0 for z < 0 and 0.01 Ts-1 for z ≥ 0 (Regime B: ρs = 2⋅10-17 Ωm). The 
transport current is shown by a dotted line.  
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Figure 5.10. The characteristic pattern of the strand current at positions 1 and 5 of a 16-strand  Rutherford-

type cable subject to field changes of 0 for z < 0 and 0.01 Ts-1 for z ≥ 0 (Regime A: 
ρs = 2⋅10-14 Ωm). The transport current is shown by a dotted line.  

If the transport currents in the strands are not equal, an additional variation of the current at 
a given strand position is present.  
 A regular pattern exists in the magnitudes of the BICCs. In each cross-section of the 
cable opposite strands (for example 3 and 11 or 7 and 15, see Fig. 5.5) carry BICCs with the 
same magnitude but with an opposite sign. Adjacent strands have only slightly different 
BICCs as shown in Fig. 5.11. For z=0 the maximum BICCs occur in the centre of the cable 
i.e. at positions Ns /4 and 3Ns /4.  
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Figure 5.11. Illustration of the magnitude of the BICCs in a 16-strand cable at a certain z-position. The 

labels indicate the strand positions as given in Fig. 5.5.  
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The regular pattern is typical for BICCs and causes them to generate more pronounced field 
errors than in the case of a random current distribution among the strands, such as that 
caused by different joint resistances. The magnitudes of the BICCs change mainly due to 
cross-over currents Ic flowing between the upper (positions 1 to Ns /2) and lower layers 
(positions Ns /2+1 to Ns) through the contact resistances Rc. The currents in Ra contribute 
only slightly to the magnitude of the BICCs (for Ra≥Rc). Hence, the currents Ic correspond 
to the change in the current Istr in the axial direction of the strand (see Figs. 5.6 and 5.7). 
This implies that the strands carrying large BICCs are more heated than the strands carrying 
small BICCs, which in turn results in a periodic behaviour of Ic and, therefore, the coupling 
power Pc along the cable length.  
 It is important that the the decay of the BICCs along the length is only quasi-exponential 
or quasi-linear if the Rc is constant. In the case of a cable with a longitudinal Rc-variation, 
the change of the BICCs along the cable length will vary according to the local Rc . This 
implies that, for example, the slope dIbi /dz of the linear decay shown in Fig. 5.7 will not be 
constant along the length but will locally increase (decrease) in sections with smaller 
(larger) Rc . This will be discussed in more detail in section 5.8.3. 
 In Fig. 5.12 the coupling power loss is shown in the entire cable for regimes A and B. At 
each z-position the power loss is calculated by the individual losses in each contact summed 
over all the (Ns-1) contacts in one band (see Fig. 4.2). The values are then divided by the 
length of one band (=Lp,s /Ns) to obtain the local power loss per unit length of cable. 
 In the case of constant &B⊥ and Rc along the cable length the cross-over currents Ic are z-
independent and result in a constant power loss Pc of 0 for z<0 and 2.21⋅10-3 Wm-1 for z≥0 
(see eq. 4.17), shown as a dotted line in Fig. 5.12. The BICCs enhance the ISCL since the 
average power loss is larger than 0 for z<0 and larger than 2.21⋅10-3 Wm-1 for z≥0. 
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Figure 5.12. The characteristic pattern of the ISCL in a Rutherford-type cable subject to field changes of 0 

for z < 0 and 0.01 Ts-1 for z ≥ 0. Bold line: ρs = 2⋅10-14 Ωm, regime A. Normal line: 
ρs = 2⋅10-17 Ωm, regime B.  
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The increase is more pronounced if the magnitude of the BICCs is larger, so that the 
enhancement of the power loss is larger for regime B than regime A. Note that for regime B 
the amplitude of the Pc-variations remains constant on both sides of the &B⊥-step while the 
amplitude decreases for regime A. The reason for this is that the maximum dIstr /dz per twist 
pitch, which is related to the amplitude of the Pc-variations, remains constant for regime B 
while it decreases for regime A (see Figs. 5.6 and 5.7). 
 
It is interesting to see that for regime B the maximum ISCL for z<0 corresponds to the 
minimum ISCL for z≥0. The same holds for regime A close to z=0. This implies that for 
z≥0 the mean currents through Rc (in one band) due to a constant &B⊥ are twice as large as 
those due to the &B⊥-step. The maximum local ISCL for z≥0 is therefore (3/2)2=2.25 times 
larger than the ISCL without &B⊥-step. For z<0 the maximum local ISCL is (1/2)2=0.25 
times the ISCL (at z≥0) without &B⊥-step. The enhancement of the ISCL due to a &B⊥-step is 
discussed in more detail in section 5.5. 
 
In Fig. 5.13 the coupling power loss in each resistance Rc is shown for regime A for 
3Lp,s<z<6Lp,s . A periodic pattern (with period Lp,s) is present where parts having large and 
small local power losses alternate. 
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Figure 5.13. The characteristic pattern of the ISCL across the cable width (with w = 10.4 mm) of a 

Rutherford-type cable subject to field changes of 0 for z < 0 and 0.01 Ts-1 for z ≥ 0 (Regime A: 
ρs = 2⋅10-14 Ωm).  

Half of the strands are less heated than the average since they ‘slalom’ in between the hot 
spots. These strands correspond to those with small BICCs. The other half of the strands, 
which carry large BICCs, are heated more than the average. Hence, the spots with a large 
local power loss correspond to those areas where strands with large BICCs cross each other. 
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Although the power loss fluctuates strongly, this does not imply that the actual temperature 
of the strands fluctuates to the same extent. Due to the good thermal conductivity inside the 
cable the temperature will probably be quite uniform under normal operating conditions in 
an accelerator magnet. 

5.4.2 Magnitude and characteristic length of BICCs under steady-state 
conditions 

The following analytical relations for ξ and Ibi,max in regimes A and B are derived by a fit to 
the numerical calculations. The errors in the fitting constants are about 5-10%. The 
calculations are performed for 8≤Ns≤40. For larger Ns the simulations become too time-
consuming. However, the relations probably also hold for cables with Ns>40 although the 
indicated errors could increase by a factor 2. 
 
Regime A. 

The BICC in strand i (see for example Fig. 5.6) can be approximated by (neglecting 
the small periodic signal for z<0): 

 I z I i N ebi i bi s
z

, ,
/( ) sin( ( . ) / )= − −

0 2 0 5π ξ    [A] , (5.4) 

where Ibi,0 is defined as the average between the maximum magnitude of the BICCs 
at positive and negative z-positions and is given by: 
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ξ
∆    [A] . (5.5) 

The relation can be expressed as a function of the maximum ISCC, Is,max, by 
combining eqs. 5.5 and 4.20, assuming cos(πx /w)=1 and ∆ &B⊥= &B⊥: 

 ( )I
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e Ibi
p s s
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s,

,

/ .
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9 621 1= − −ξ
max    [A] . (5.6) 

The impact of these relations for practical cables is discussed later. The characteristic 
length ξ is equal for all the strands in the cable and is given by: 

 ξ = 0 50. /,L

N
R Rp s

s
c s    [m] . (5.7) 

For Rs=0 the BICCs have to be calculated using the formulas for regime B. The 
length ξ can be expressed in terms of ρs by combining eqs. 4.11 and 5.7: 

 ξ
π

ρ
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. ,R L d

N
c p s s

s s

   [m] . (5.8) 

The relation is shown in Fig. 5.14 for several resistivities. ξ can be large for practical 
superconductors especially for small ρs and large Rc. It is important that ρs denotes 
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an effective strand resistivity that the BICCs ‘see’ which could be different from the 
strand resistivity that the transport current ‘sees’. A brief discussion and an estimate 
of this effective resistivity is given in section 7.7.5. Note that in the case of normal 
conducting strands with a large resistivity, ξ is very small so that, in fact, no BICCs 
are present. 
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Figure 5.14. Calculated characteristic lengths ξ of a 26-strand Rutherford-type cable with ds = 1.3 mm and 

Lp,s = 0.1 m.   

If ξ is much larger than the lengths lcab,1 (for z<0) and lcab,2 (for z≥0) then the BICCs have 
to be calculated using the formulas for regime B. If ξ is of the same order as lcab,1 (or lcab,2) 
then the exact BICC pattern cannot be described by simple analytical relations but the 
relations for regime A or B can be used as a first approximation.  

 
Regime B. 

A similar expression for Ibi,0 is obtained as eq. 5.4 with the difference being that the 
BICCs depend linearly on the cable length: 

 ( ) ( )I z I i N z lbi i bi s cab i, , ,( ) sin ( . ) / /= − −0 2 05 1π    [A] , (5.9) 

with lcab,i= lcab,1 for z<0 and lcab,i= lcab,2 for z≥0. The maximum magnitude of the 
BICCs in the cross-section of the cable equals: 
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Again, the current Ibi,0 can be written as as a function of Is,max, by combining 
eqs. 5.10 and 4.20, assuming cos(πx /w)=1 and ∆ &B⊥= &B⊥: 

 ( )I
l

L N
e Ibi

cab eff

p s s

Ns
s,

,

,

/ .
,0

9 625 1= − −
max    [A] . (5.12) 

The maximum magnitude Ibi,0 of the BICCs for practical cables (i.e. Ns is about 20-40) is, in 
first approximation, about a factor ξ /Lp,s (regime A, see eq. 5.6) or lcab,eff /Lp,s (regime B, see 
eq. 5.12) larger than the maximum ISCC. This factor explains the large difference in the 
magnitude of the BICCs shown in Figs. 5.8 (with Ibi,0≈50 A) and 5.9 (with Ibi,0≈200 A) 
since lcab,eff≈4ξ for the given simulation parameters.  
 
The impact of the BICCs becomes clear by considering a dipole coil, where ∆ &B⊥≈ &B⊥ in the 
coil ends (see Fig. 5.1). For large ξ (regime A) or lcab,eff (regime B) the BICCs can attain 
very large values, even at small field-sweep rates and large contact resistances. For 
example, Ibi,0=92 A for Ns=26, w=0.017 m, ξ=10 m, Rc=10 µΩ and ∆ &B⊥=0.0066 Ts-1 
(regime A).  
 Note that the magnitude of the BICCs is proportional to &B⊥, provided that ξ (for 
regime A) is independent of &B⊥. This is an important conclusion that is used in chapter 7 in 
order to distinguish the field distortions caused by the BICCs and those caused by a non-
uniform current distribution among the strands (due to different joint resistances). 
 Although the magnitude of the BICCs varies considerably between regimes A and B, the 
maximum in the local power loss is the same (see Fig. 5.12), because the slope dIstr /dz is the 
same for z→0, and therefore also the local currents Ic for z→0.  
 
In this section a constant Rc along the cable is assumed. However, as discussed in the 
introduction of this chapter, spatial Rc-variations are always present in a coil. The BICCs 
caused by these variations are discussed in section 5.7 in the case of a constant &B⊥. 
However, spatial Rc-distributions also change the magnitude of BICCs provoked by a &B⊥-
step. In general the local increase of the BICCs, i.e. dIbi /dz, (see for example Figs. 5.6 and 
5.7) is inversely proportional to the local Rc. This means that all the sections in a cable 
having a small Rc could enhance the magnitude of the BICCs, even if these sections are 
placed in a low-field region of the magnet. A typical example is the joint between the cables 
of two poles. An example of the influence of a local decrease in Rc on the magnitude of the 
BICCs is given in section 5.8.3. Expressions for all typical Rc- and &B⊥-variations along the 
cable length cannot be given since the number of combinations is much too large. 
 
The BICCs can only attain the steady-state values if: 
− the total current (i.e. the sum of the transport current, the ISCC and the BICC) in each 

strand section remains smaller than the critical current, 
− the characteristic time of the BICCs is smaller than the time during which the cable is 

exposed to a field change. In the next section the characteristic time of the BICCs is 
discussed by means of their step response. 
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5.4.3 Characteristic time of BICCs 
The development of the BICCs in time is investigated by introducing self- and mutual 
inductances between the strands as discussed in section 4.2. As an example, the decay of the 
BICCs in an 8-strand cable (with ds=1 mm, ρs=1.2⋅10-14 Ωm and Lp,s=0.1 m) is calculated 
for: 
 t≤0: &B⊥=0 for z<0 and &B⊥=0.01 Ts-1 for z≥0, 
 t>0: &B⊥=0 for z<0 and &B⊥=0 for z≥0. 
 
At t=0 the BICCs have attained their steady-state values and decay quasi-exponentially 
along the length (see eq. 5.4). For t>0 the BICCs decay to 0, starting from the initial value 
at t=0, as illustrated in Fig. 5.15, where the decay of the BICCs at several z-positions is 
depicted as a function of the time. The moment at which the BICCs start to decay 
propagates through the cable. Near z=0 the decay is instantaneous, whereas for larger z the 
decay starts after a certain time. This propagation is discussed in section 5.4.4. 
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Figure 5.15. The decay of the BICC in a given strand as a function of the time at several z-positions. The 

dotted line shows the characteristic time at z = 6Lp,s i.e. the period during which the BICC at 
z = 6Lp,s has decayed to 1/e of its initial value.   

The relative decay is identical for all the strands. Since the decay as a function of the time is 
not exponential, the following characteristic times are defined: 
− τbi (z): The time during which the BICCs at position z decay to 1/e of their initial values 

(see section 5.4.4). 
− τbi,av: The time during which the average of the absolute value of all the BICCs in the 

whole cable decays to 1/e of its initial value. 
 
The characteristic times are calculated for both regimes with the same approach as used for 
the calculation of τis,cab (see section 4.4.2), i.e. in the case of a straight cable having strands 
with a round cross-section. The characteristic times increase slightly for cables with a small 
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keystone angle or highly compressed cables. The results of the numerical calculations are 
expressed by analytical relations which are valid for 8≤Ns≤40 with an error in the constants 
of proportionality of about 20%.  
 
Regime A. 

The characteristic time τbi,av satisfies: 

 τ
π

ρbi av
p s

s

s s

s

L

R

N d
,

, .= ⋅ = ⋅− −2.4 10 12 108 8
2

   [s] ,  (5.13) 

where the constants have the dimensions Ωsm-1. If ρs=0 the BICCs should be 
calculated using the formulas for regime B so that eq. 5.13 is no longer relevant. The 
times τbi,av are about 30% larger than the times τbi (0).  
 Eq. 5.13 shows that τbi,av is independent of Rc, which can be understood by 
considering the cable as a simple LR-circuit, where L represents the effective 
inductance of the strands over a length ξ and R represents the effective resistance of 
the parallel connected resistances Rc. Hence, L is linear in ξ and R is linear in Rc /ξ. 
Since the time constant of an LR-circuit is given by τ=L/R, the time constant τbi,av is 
proportional to ξ /(Rc /ξ)=ξ 2/Rc. This implies that τbi,av is independent of Rc, because 
ξ 2 is linear in Rc (see eq. 5.7). 

 
Regime B. 

Since the BICCs decay linearly towards the end of the cable, the time constant τbi,av 
is now related to the lengths lcab,1 and lcab,2 and can be expressed by: 

 τ bi av
cab cab s

p s c

l l N

L R,
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2

   [s] , (5.14) 

where the constants has the dimension Ωsm-1. The characteristic time τbi,av can be 
expressed as a function of the interstrand time constant of a single cable by 
combining eqs. 5.14 and 4.31: 

 τ τbi av
cab cab

p s
is cab

l l

L,
, ,

,
,.= 38 1 2

2    [s]   for large Ns.  (5.15) 

Note that for lcab,1= lcab,2= lcab /2 the characteristic time τbi is about a factor (lcab /Lp,s)2 
larger than τis,cab.  

 
The time constant is either limited by the effective strand resistivity (regime A) or by the 
lengths and the cross-contact resistance (regime B) as shown in Fig. 5.16 for a 26-strand 
straight cable with lengths of 22 m and 110 m (as an example). The horizontal lines show 
eq. 5.13 while the lines which are inversely proportional to Rc represent eq. 5.14. The bold 
curve shows the characteristic time τbi,av as a function of Rc in the case of a cable 
with lcab,1=2 m and lcab,2=20 m. If  Rc is small,  the BICCs decay before  the end of the cable  
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Figure 5.16. The characteristic time τbi,av as a function of the contact resistance Rc. The horizontal curves 

refer to regime A while the linearly decreasing curves represent regime B (where the two 
labels indicate the lengths lcab,1 and lcab,2). The bold line shows the actual characteristic time 
τbi ,av in a cable with lcab,1 = 2 m and lcab,2 = 20 m (Ns = 26, ds = 1.3 mm, Lp,s = 0.13 m).   

(regime A) so that τbi,av is independent of Rc (see eq. 5.13). If Rc is large, the characteristic 
time of the BICCs is limited by the lengths (regime B). The bold line deviates slightly for 
the region in-between regimes A and B. The above implies that similar coils with different 
Rc exhibit about the same τbi,av if the BICCs decay over a length ξ (regime A), while they 
exhibit different τbi,av if the BICCs decay over the whole cable (regime B). 
 
The characteristic times of the BICCs in a coil can change (compared to a straight cable) 
due to the mutual inductances between the BICCs of the various turns. The interaction of 
the ISCCs between the turns of a stack of cable pieces causes an increase in the time 
constant of the ISCCs (see section 4.9) of about a factor 4-5 for LHC dipole magnets (see 
section 6.2.3) because the ISCC-distribution across the cable width is similar for each turn. 
However, the BICCs at a given strand position oscillate along the length with a phase that 
varies for each turn, since the length of each turn is different (see Fig. 2.3). Hence, τbi,av in a 
coil depends on the exact geometry of the coil, and can be a few times smaller or larger than 
τbi,av in a single straight cable. Of course, in an actual coil a spectrum of τbi,av is present due 
to the numerous &B⊥-variations located at different positions with respect to the cable ends 
and possibly in sections with different Rc.  
 In section 3.4 it is shown that the IFCL can be expressed by Pif=nτif &B s⊥

2/µ0 with n a 
shape factor equal to 2 for strands with a round cross-section. A similar relation is shown to 
be present between Pc and τis,cab (see eq. 4.36). However, it is important to note that such a 
relation is not present between τbi,av and the enhancement of the ISCL due to the BICCs.  
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5.4.4 Propagation velocity of BICCs 
In section 5.4.3, the characteristic time τbi (z) is defined as the time during which the BICCs 
at position z decay to 1/e of their initial values. As an example, τbi(z) is depicted in Fig. 5.17 
for an 8-strand cable with ds=1.3 mm, Lp,s=0.1 m, Rc=0.1 µΩ and ρs=1.1⋅10-14 Ωm 
(regime A). 
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Figure 5.17. The time τbi at which the BICCs decay to 1/e of their initial values as a function of the z-

position. The average propagation velocity vbi,av corresponds to the inverse of the slope of the 
curve between z = 0 and z = ξ.    

The characteristic time can be expressed by: 

 τ τbi bi
bi

z
z

v z
( ) (

( )
= +0)    [s] , (5.16) 

where vbi (z) is defined here as the propagation velocity of the BICCs through the cable 
which increases slightly with increasing z. In other words, the propagation velocity 
expresses the time it takes before a strand current at a certain distance from the &B  non-
uniformity starts to change due to an additional BICC contribution (besides the transport 
current and the ISCC). The time dependent behaviour of the BICCs in a cable shows a 
certain similarity with electromagnetic waves that are characterised by a propagation 
velocity, and attenuation and dispersion along the length. In a coil the propagation velocity 
will probably be imperceptible since the BICCs caused by the numerous non-uniformities 
interfere and partially cancel. The increase in the characteristic time is, however, 
experimentally observed in a 1.3 m long cable (see section 5.8.3). 
 In the following an average velocity is defined over a length ξ (for regime A) and lcab,i /2 
(for regime B) as: 

 vbi av
bi bi

, ( ) (
=

−

ξ

τ ξ τ 0)
   [ms-1]   for regime A,  (5.17) 
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and: 
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   [ms-1]   for regime B, (5.18) 

with lcab,i= lcab,1 for z<0 and lcab,i= lcab,2 for z≥0.  
 The average propagation velocity is numerically calculated for regimes A and B and can 
be analytically described by the following formulas which are valid for 8≤Ns≤40 with an 
error in the constants of proportionality of about 20%.  
 
Regime A. 

 v
R R

Nbi av
c s

s
, = ⋅2.2 107    [ms-1] ,  (5.19) 

which is equal to (using the expressions for ξ and τbi,av given by eqs. 5.7 and 5.13): 

 vbi av
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τ
   [ms-1] . (5.20) 

Combining eqs. 5.17 and 5.20 shows that τbi (ξ)=τbi,av+τbi (0)=2.3τbi (0) since 
τbi,av=1.3τbi (0) (see the remark after eq. 5.13), as can also be seen in Fig. 5.17. 

 
Regime B. 
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which can be combined with eq. 5.14 to give:  

 v
l
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,

,

,
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τ
   [ms-1]   for z≥0. (5.22) 

In a similar way, vbi,av for z<0 is equal to lcab,2 /τbi,av. 
 

5.4.5 Arbitrary &B⊥ -distributions  
Due to the discrete nature of the cable, any distribution of &B⊥ along the cable length can be 
modelled by a multi-step function, the value of which varies at each band (with a length of 
Lp,s /Ns) of the cable. Hence, there is a total of NB= lcabNs /Lp,s steps, where z=0 corresponds 
to the end of the cable (i.e. lcab,1=0 and lcab,2= lcab). The multi-step function can be replaced 
by NB single-step functions as long as the set of equations is completely linear, that is as 
long as ρs is independent of the current through the strand. The steady-state distribution of 
the BICCs can then be calculated as a summation of the BICCs of the NB single-step 
functions, each with a field variation ∆ &B⊥ ,m. According to eq. 5.4, the BICC in strand 
number i for regime A can be written as: 
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A similar expression can be derived for regime B by combining eqs. 5.9-5.11. An 
illustration is given in Fig. 5.18 for an 8-strand cable subject to a linear increase in &B⊥ over 
a length lt=5Lp,s /8. Only the single-step functions for which ∆ &B⊥ ,m≠0 are shown. 

0 0.25 0.5 0.75 1 1.25
z -Position, z /L p,s

l t

L p,s /N s

∆B ⊥,m
.

 
Figure 5.18. Representation of a linear increase in &B⊥  by a multi-step function and consecutively by five 

single-step functions, shifted in the z-direction by a distance of one band length (=Lp,s /Ns).  

Assuming lt<< lcab and ξ<< lcab it can be easily seen that for regime A:  
− The BICCs are maximum if the &B⊥-transition happens in a single step, since the 

summation in eq. 5.23 can never be larger than Ibi,0 as defined by eq. 5.5. The largest 
magnitude of the BICCs for an arbitrary &B⊥-variation is therefore directly given by 
eq. 5.5. 

− The magnitudes of the BICCs depend on the length lt. Minima are present for lt=k⋅Lp,s 
with k=1, 2, 3, … and will be almost zero if ξ>> lt . Maxima are present for 
lt=(k+0.5)⋅Lp,s with k=0, 1, 2, … and decrease with increasing k. 

Also the coupling power loss will have minima and maxima since the power is linear to the 
square of the coupling currents. The same conclusions hold for regime B, where the minima 
will be almost zero if lcab,eff>> lt . 
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It has been shown in section 5.1 that two types of &B⊥-variations can be distinguished in a 
magnet:  
− strong variations where |∆ &B⊥/∆z| is of the same order as | &B⊥ ,max /Lp,s | , 
− weak variations where |∆ &B⊥/∆z| is much smaller than | &B⊥ ,max /Lp,s | . 
According to eq. 5.24, an important conclusion is that the BICCs caused by strong 
variations are usually much larger than the BICCs caused by weak variations.  
 
In a similar way it can be shown that a &B⊥-dip over a width lt , i.e.: 
− &B⊥= &B1 for z<0, 
− &B⊥= &B2  for z>0 and z< lt , 
− &B⊥= &B1 for z> lt ,   
 
 
 
 
 
will also result in a minimum of the power loss for lt=k⋅Lp,s with k=1, 2, 3, … and a 
maximum for lt=(k+0.5)⋅Lp,s with k=0, 1, 2, … 

5.5 Cables that are partially exposed to &B⊥ 
In the previous sections it is shown that BICCs are present in a cable which is exposed to a 
varying &B⊥ in the z-direction. The magnitude of the BICCs varies along the length due to 
currents through Rc, which results in an additional loss, also in those parts of the cable 
where &B⊥ is equal to 0. The enhancement of the ISCL due to BICCs is dealt with in this 
section for a cable with length lcab which is locally subjected to &B⊥ over a length la (see 
Fig. 5.19) centred along the cable.  
 

 

Figure 5.19. Illustration of a cable with length lcab that is exposed to a varying magnetic field &B⊥  over a 
length la located in the axial centre of the cable.  

The typical enhancement of the ISCL in the case of a very small strand resistivity 
(regime B) is investigated as a function of: 
− the length la for a constant cable length lcab=2 m (case I, see Fig. 5.20), 
− the cable length lcab for a constant length la=2.5Lp,s (case II, see Fig. 5.21), 
with Ns=16, Lp,s=0.1 m, w=8 mm, Ra=100 µΩ, Rc=1 µΩ, ρs=2.5⋅10-18 Ωm, &B⊥=0.01 Ts-1. 
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Figure 5.20. The coupling power loss in a cable with length lcab = 2 m exposed to a locally applied &B⊥  of 

length 0 < la < 2 m. The dotted line shows the power loss for la = 0.25 m and corresponds to the 
value as given in Fig. 5.21.   
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Figure 5.21. The coupling power loss in a cable with length lcab exposed to a locally applied &B⊥  of length 

la =0.25 m. The cable length is varied between 0.25 m and 2 m. The dotted line shows the 
value for lcab =2 m and corresponds to the value as given in Fig. 5.20.   

The power loss Pc,0 is equal to the power loss if no BICCs are present and is calculated 
using eq. 4.17, multiplied by la. The dotted lines in both figures correspond to the same case 
namely la=0.25 m=2.5Lp,s and lcab=2 m=20Lp,s .  
 The maxima in the power loss of Fig. 5.20 correspond to la=(k+0.5)Lp,s (see also 
section 5.4.5). The ISCL at the minima (la=k⋅Lp,s) is larger than Pc,0 since the BICCs of the 
two &B⊥-steps do not completely cancel due to the longitudinal decrease of the BICCs. The 
total loss in the cable increases significantly, especially for small la compared to lcab .  
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The maxima will be less pronounced if the characteristic length of the BICCs is much 
smaller than lcab (regime A). 
 The relative increase of the ISCL, Pc /Pc,0, for case I varies between two limits as can be 
seen in Fig. 5.20. The upper limit is given by the maxima in Pc , i.e. at la=(k+0.5)Lp,s 
whereas the lower limit corresponds to la=k⋅Lp,s . The relative increase of the ISCL for 
case II gradually decreases for increasing ratio la /lcab . The scaled ISCL is depicted in both 
cases in Fig. 5.22. 
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Figure 5.22. The relative enhancement of the ISCL in a cable that is locally exposed to &B⊥  over a length 

la. Case I: lcab =2 m, 0.05lcab < la < lcab. Case II: la =2.5Lp,s =0.25 m, la < lcab <2 m. The lower 
bold line shows also the case la =2Lp,s =0.2 m, la < lcab <2 m.   

An important conclusion is that a loss measurement on a cable with la< lcab will not result in 
a representative ISCL, and hence Rc. The enhancement of the ISCL depends on the ratio 
between la and lcab and on the magnitude of the BICCs. The difference will be negligible if 
the strand resistivity is large so that ξ< la . To determine the representative loss of a long 
cable, the loss that is locally dissipated at the cable part of length la has to be measured by 
means of magnetisation or calorimetric measurements where the pick-up coils and the bell 
jar (which collects the evaporated helium) respectively cover only the length la of the cable. 
 In a dipole magnet the increase in the ISCL due to the BICCs cannot be calculated using 
the above figures since the &B⊥-distribution is very complicated. However, a simple analysis 
shows that the increase is small since the local &B⊥-dips are relatively small compared to the 
cable length (see Fig. 5.1). For example, in the case of a 1 m long LHC-type dipole the ratio 
la /lcab is about 0.99 for each &B⊥-dip. The total length of the &B⊥-dips is about 20% of the 
cable length and thus la /lcab=0.8. According to Fig. 5.22 the enhancement of the ISCL will 
then be about 10% maximum, but will be smaller in practical coils since the BICCs 
generated by the various &B⊥-dips will partially cancel. Calculations with the network model 
in which the whole &B⊥-distribution is incorporated shows that the increase is smaller than 
5% and 1% for dipole magnets with lengths of 1 m and 10 m respectively. 
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5.6 &B⊥-steps with Rc>>Ra  
It is shown in section 5.4 that the magnitude of the BICCs can be reduced by increasing Rc 
where it is assumed that Ra>>Rc. However, for large Rc (for example by placing a resistive 
barrier between the two layers of the cable) some BICCs are still generated due to the 
presence of the adjacent resistances Ra. The following relations describe the characteristic 
length and magnitude for regimes A and B deduced from numerical simulations and are 
valid for 8≤Ns≤40. The errors are about 10% for all the fitting constants. 
 
Regime A. 

Eq. 5.4 describes the z-dependence of the BICCs with the following new expressions 
for Ibi,0 and ξ:  
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and: 
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Note that these relations are qualitatively quite different from eqs. 5.5 and 5.7 since 
Ra and Rc have, of course, a very different effect on the current distribution in the 
cable. Combining eqs. 5.5, 5.7 and 5.25 shows that the magnitude Ibi,0 if Rc<<Ra is a 
factor F larger than the magnitude if Rc>>Ra with: 
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Regime B. 
Eq. 5.9 describes the z-dependence of the linearly decaying BICCs with: 
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The factor F as defined above is equal to (combining eqs. 5.10 and 5.28):  
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The two values of F clearly show that a resistive barrier between the two layers of the cable 
strongly reduces the BICCs, especially for cables with a large number of strands. Assume, 
for example, a 30-strand cable with Ra=10 µΩ, Rc=1 µΩ. Inserting a resistive barrier and 
soldering the cable could result in Ra=1 µΩ and Rc>>Ra . The magnitude of the BICCs will 
then decrease by a factor F=5.5 (regime A) to 14 (regime B).  
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A local decrease in Rc (for example in a cable-to-cable connection) does not change the 
magnitude of the BICCs significantly (for a characteristic case of Ra=1 µΩ and Rc=100 µΩ 
and 0.5 µΩ in the connection). 

5.7 Non-uniform Rc-distributions 
In accelerator magnets Rc is likely to change across the cable width due to the keystone 
angle and the gradient in the transverse stress. This variation, however, does not generate 
BICCs as long as the variation is constant along the cable length. Longitudinal Rc-variations 
can be present along the whole cable of a pole, in the soldered connections, in local ‘shorts’ 
between strands and in the coil ends (see also section 5.1).  
 Each longitudinal variation in Rc generates BICCs with a characteristic length, a 
characteristic time, a propagation velocity and a magnitude in a similar way to that with a 
non-uniform &B⊥.  
 The magnitude of the BICCs is investigated for a cable with a change in Rc along the 
cable length from Rc=Rc,1 for z<0 to Rc=Rc,2 for z≥0. Fig. 5.23 shows the current in the 
strand at position 1 (see Fig. 5.5) along the length of the cable for Rc,1=1.5 µΩ and 
Rc,2=0.5 µΩ (Ns=16, ds=1.3 mm, Itr,str=0 A, ρs=2⋅10-14 Ωm, &B⊥=0.01 Ts-1). 
 Note the similarity of the current pattern compared to Fig. 5.8. The average strand 
currents at the edge are about -4.5 A for z<0 and -13.5 A for z≥0 and correspond to the 
ISCCs for a cable without longitudinal variations. Just as in the case of a step in &B⊥, the 
BICCs can be regarded as currents that are maximum close to the Rc non-uniformity and 
decay quasi-exponentially (regime A) or quasi-linearly (regime B) towards 0.  
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Figure 5.23. The characteristic pattern of the strand current at position 1 of a cable with a change in Rc 

from Rc,1 =1.5 µΩ for z <0 to Rc,2 =0.5 µΩ for z ≥ 0. The cable is subject to a field change of 
0.01 Ts-1 (Regime A: ρs =2⋅10-14 Ωm).  
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Regime A.  
The characteristic length is different for z<0 and z≥0. The two characteristic lengths 
ξ1 and ξ2 are given by eq. 5.7 where Rc should be replaced by Rc,1 and Rc,2 
respectively. For 8≤Ns≤40, the decay of the BICCs along the length is given by 
eq. 5.4 with ξ=ξ1 for z<0 and ξ=ξ2 for z≥0 and: 
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with Rc,i=Rc,1 for z<0 and Rc,i=Rc,2 for z≥0,  
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The error in the fitting constant 1.1 is smaller than 10%.  
 
Regime B.  

The more complicated relations of Ib,0 for regime B are disregarded here as well as 
the expressions for τbi,av and vbi,av  for the two regimes. 

 

BICCs due to a longitudinal Rc-variation are only generated if, at the place of the Rc-
variation, the cable is exposed to a varying field &B⊥. This implies that the Rc-variations in 
the splices and near the coil ends result in BICCs that are much larger than the BICCs 
caused by Rc-variations in the pole-to-pole connections and the connections between the 
cable and the current lead (which are located outside the high-field region of the coil). 
 
In section 5.4.5 it is shown that an arbitrary &B⊥-variation can be regarded as a finite 
summation of &B⊥-steps. In a similar way the BICCs for an arbitrary Rc-distribution can be 
calculated by a summation of steps in ξeff /Rc,eff . Random distributions of Rc will not lead to 
considerable BICCs since the BICCs produced by all the small steps will mainly cancel. 
Cable sections where the average Rc is likely to differ, such as the coil ends and the splices, 
can be well simulated by two Rc-steps. 
 
The magnitude of the BICCs provoked by an Rc-step and a &B⊥-step is investigated by means 
of the characteristic case of the coil ends of a dipole magnet. This clarifies whether Rc- or 
&B⊥-variations are the dominant source of BICCs. In the coil ends, the &B⊥-variation is large 

since the cable bends around the beam pipe, and Rc is probably large since the strands are in 
weak contact. Here the &B⊥- and the Rc-variations are assumed to be step-like.  
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The following parameters are taken for the characteristic case of a PBD magnet as specified 
in Table 2.1: Ns=26, w=0.017 m, Lp,s=0.1 m, ds=1.3 mm, ∆ &B⊥= &B⊥ (see Fig. 5.1). The 
resistance Rc,end in the ends is assumed to be much larger than the resistance Rc in the 
straight part so that Rc,eff=Rc . Combining eqs. 5.5 and 5.30, the ratio F between Ibi,0 in the 
case of a &B⊥-step and an Rc-step is approximately: 

 F
I

I
bi

bi s

= =
⋅ −

,
&

,

0

0

78 10B-step

Rc -step ρ
 , (5.33) 

which is much larger than 1 provided that ρs is smaller than 10-14 Ωm.  
 In section 7.7.5 the effective strand resistivity is estimated to be smaller than a few times 
10-14 Ωm. An important conclusion is, therefore, that the BICCs in superconducting coils 
are mainly caused by &B⊥-variations whereas Rc-variations only have a minor effect.  

5.8 Experimental observation of BICCs in a 1.3 m long cable 
5.8.1 Introduction 
In sections 5.4.1-5.4.5 expressions are given for the characteristic lengths and magnitudes of 
BICCs in a straight cable. The formulas are derived for single &B⊥- and Rc-steps and it is 
shown how more complex &B⊥- and Rc-distributions can be dealt with. The major problem in 
estimating the BICCs in a coil is related to the partial cancelling of the BICCs produced by 
the numerous non-uniformities. Also the unknown effective strand resistivity prevents a 
good quantitative estimate of the BICCs. The characterisation of BICCs in magnets, by 
means of measurements of the magnetic field in the aperture of a magnet (see chapter 7), 
can therefore hardly be used to validate the formulas as derived in the previous sections. 
 
In order to prove the existence of BICCs and to validate the formulas a new experimental 
set-up has been designed and constructed by which several parameters that affect the 
characteristics of the BICCs can be varied independently. It is based upon the measurement 
of the magnetic field, caused by the BICCs, along the length of a single straight cable. The 
cable can be locally subjected to a &B⊥-variation and the Rc of the cable can be spatially 
changed. A description of the set-up and the features that can be implemented are given in 
section 5.8.2.  
 
A discussion of the experimental results is presented in section 5.8.3. The field caused by 
the BICCs, the characteristic time, the propagation velocity and the decay pattern are 
analysed as a function of the field-sweep rate for several Rc-distributions. The results are 
compared to the numerically calculated formulas in order to validate the network model for 
modelling BICCs. The main purpose is to obtain a good qualitative agreement between the 
measurements and the calculations, whereas a good quantitative agreement is probably not 
possible since the exact spatial distribution of Rc is not well-known. 
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5.8.2 Experimental set-up 
The test set-up has been designed in such a way that the characteristics of the BICCs, i.e.: 
− the magnitude, 
− the characteristic time, 
− the propagation velocity,  
− the decay along the length, 
can be investigated for various spatial distributions of Rc and &B⊥.  
 
The schematic front view and cross-section are shown in Fig. 5.24. The set-up is installed 
vertically in a cryostat and immersed in liquid helium at 4.2 K. A keystoned Rutherford-
type cable (cable I-1, see Table 2.4) with a length of 1.3 m (which corresponds to 10Lp,s) is 
clamped over a length of 1.1 m (=8.5Lp,s) between two pressure bars. A transverse pressure 
on the cable of 15 MPa maximum can be applied by means of 30 bolts. The Rc-value can 
therefore be easily varied along the cable length. The strands in the two end sections of the 
cable, with a length of 10 cm, are in loose contact but can be soldered together to simulate 
the influence of the joint resistances on the characteristics of the BICCs.  
 
A stainless-steel heater is fixed on the large faces of the cable in order to drive the cable 
from the superconducting into the normal state. The heater is electrically insulated from the 
pressure bar and the cable.  
 
The field in the y-direction is determined by an array of eight Hall probes, each having an 
active area of about 1 mm2. The centre of the probes is located at a distance of 2 mm from 
the narrow side of the cable. The probes are fixed on a small sledge which can move in the 
longitudinal direction over two glass guiding rods. The z-position of the sledge can be 
adjusted from outside the cryostat by means of a positioning bar with an accuracy better 
than 0.2 mm. 
 
Two strands of the cable are connected to a current supply in order to calibrate the Hall 
probes. Furthermore, it can be investigated whether the BICCs are affected by an additional 
transport current in one of the strands.  
 
A transverse field of 1.4 T maximum can be applied by means of a set of superconducting 
coils, located on both sides of the cable. The centre of the magnet is located at z=0. The 
cable lengths on either side of the magnet centre are 19 cm (=1.4Lp,s) and 111 cm (=8.5Lp,s). 
The &B⊥-distribution along the cable caused by the set of coils when ramped from 0 to 1.4 T 
in 10 s is shown in Fig. 5.25. In the following the &B⊥-value refers to the maximum field-
sweep rate at z=0. 
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Figure 5.24. 
a.  Front view of the set-up. 
b.  Cross-section of the set-up 

at A (see a.).  
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Figure 5.25. The applied field change &B⊥  at the centre of the cable (x=w/2, see Fig. 4.1) along the cable 

length, for a field sweep of the set of coils from 0 to 1.4 T in 10 s.   

The distribution of the contact resistance over the cable length can be, in first 
approximation, represented by five regions with contact resistances Rc,1 to Rc,5 (see 
Fig. 5.26). The contact resistance Ra is assumed to be larger than Rc and will be disregarded. 
 
 

 
Figure 5.26. Approximation of the distribution of the cross-contact resistance along the cable length by 

means of five regions with different Rc. The z-position (in cm) is shown at the top.   

The central part with a length of 110 cm covers the section which is pressurised at about 10-
15 MPa. According to Fig. 4.29, Rc,3 is about 10-20 µΩ. However, due to the steep slope of 
the Rc-P⊥ curve a significant larger value is possible for sections subject to a smaller 
pressure.  
 The end sections of the cable with a length of 10 cm have almost infinite Rc since the 
strands are in very poor contact with each other. Half of the end sections can be soldered, 
resulting in small Rc,1 and Rc,5. The Rc of a soldered cable is about 0.3 µΩ, according to 
Fig. 4.29. Since in the end sections a small gap is present between the strands of both layers 
of the cable, Rc is estimated to be a few times larger. 
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5.8.3 Results and discussion 
The magnitude of the steady-state BICCs for the given &B⊥- and Rc-distributions are 
calculated by means of the network model. The simulations are performed for a cable with 
the same geometry and number of strands as the measured cable. The field caused by the 
BICCs is calculated using the approach as discussed in section 7.2. Calculations of the 
characteristic time and the propagation velocity for this cable with its specific &B⊥- and Rc-
variations are not performed. First estimates of the characteristic time and propagation 
velocity are made using the formulas given in sections 5.4.3 and 5.4.4 and are compared to 
the measured values. 
 The field Bbi, produced by the BICCs, and the characteristic time are determined as a 
function of the z-position in the range 0.5Lp,s<z<7.5Lp,s. Measurements are performed for 
three different Rc-distributions along the cable length (see Fig. 5.26): 
I: a cable with unsoldered ends, i.e. Rc,1, Rc,2, Rc,4 and Rc,5 are much larger than Rc,3 , 
II: a cable with one soldered end, i.e. Rc,1 is about 1 µΩ, whereas the other Rc-values remain 

unchanged, 
III: a cable with two soldered ends, i.e. Rc,1 and Rc,5 are about 1 µΩ, whereas the other Rc-

values remain unchanged. 
 
The field measured by the Hall probes consists of: 
− the stray field of the magnet, 
− the field Bis produced by the ISCCs, 
− the field Bif produced by the IFCCs, 
− the field Bbi produced by the BICCs, and 
− the field Bm due to the filament magnetisation caused by the stray field of the magnet 

and by the field produced by all the coupling currents. 
 
Field Bbi can be quite easily distinguished from the other field contributions, because: 
− the magnitudes of fields Bis and Bif are negligible compared to the magnitude of the field 

Bbi , 
− the stray field and the magnetisation due to the stray field can be determined using a 

very small field-sweep rate, 
− the magnetisation due to the coupling currents is relatively small compared to the 

amplitude of field Bbi itself. 
 
The characteristic fields Bbi as measured with the Hall probes are shown in Fig. 5.27 at a 
field sweep from 0 to 1.4 T with 0.019 Ts-1 for case II (a cable with one soldered end). The 
figure shows clearly that the fields Bbi approach their steady-state values during the ramp 
and decay with a characteristic time of about 10 s as soon as the the field-sweep is finished. 
 Since the characteristic times during and after the field sweep are equal, it can be 
concluded that the BICCs are not significantly affected by the dynamic resistivity of the 
strand, which is proportional to &B⊥ (see eq. 5.3). Measurements at various field-sweep rates 
prove that the steady-state fields (and hence the BICCs) are proportional to &B⊥ whereas the 
characteristic time is independent of &B⊥. Both results agree with the calculations (see 
eqs. 5.5, 5.10, 5.13 and 5.14). 
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Figure 5.27. Field Bbi measured simultaneously by four Hall probes during and after a field sweep from 0 

to 1.4 T (see the straight line) with &B⊥ =0.019 Ts-1. The labels indicate the z-position of the 
Hall probe. The dotted lines show the start and the end of the field sweep.   

The steady-state Bbi-values are measured along the cable for 0.5Lp,s<z<7.5Lp,s and depicted 
in Fig. 5.28 for case I with &B⊥=0.068 Ts-1. The continuous line corresponds to the 
calculated field using the network model with a finite and constant resistance Rc,3, infinite 
resistances Rc,1 , Rc,2 , Rc,4 , Rc,5 and a very small strand resistivity, so that the BICCs can be 
classified in regime B (see section 5.4.1). 
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Figure 5.28. Field Bbi as a function of the z-position for case I with &B⊥ =0.068 Ts-1. The dotted lines show 

the boundaries between the sections with different Rc (see Fig. 5.26). The continuous line 
corresponds to the calculated field using the network model.   
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The magnitude of the quasi-sinusoidally varying field, which depends in this case only on 
Rc,3, corresponds to the measured field assuming Rc,3=100 µΩ. This value is large compared 
to the expected value of 10-20 µΩ, which could be caused by an overall decrease in the 
pressure on the cable (see Fig. 4.29), due to different shrinkage of the pressure bolts, the 
cable, the heaters and the insulation (see Fig. 5.24b) during cool-down. An increase in Rc 
near z=0 also results in significantly smaller BICCs even if Rc in the rest of the cable is 
much smaller.  
 
The shape of the curve (with period Lp,s) does not depend on Rc,3 and corresponds very well 
with the measured one. Both the calculated curve and the measured points decay linearly to 
0 at the end of the cable which prove that also the BICCs decay linearly to 0 (see also 
Fig. 5.9 as a comparison). The flattening in the maxima of the measured field is caused by 
one or a few strands that carry slightly smaller BICCs than expected. This is probably due to 
local variations in Rc, especially at z<0. Another possibility is that the surfaces of one or a 
few strands are more oxidised than the others or that some strands have a large effective 
strand resistivity.  The linear decay imposes a certain maximum limit to the effective strand 
resistivity ρs. According to eq. 5.8, ρs should be smaller than a few times 10-13 Ωm. If it is 
larger, the characteristic length is smaller than 1 m which would result in a quasi-
exponential decay. 
 
Fig. 5.29 shows the characteristic time τbi (z) of the BICCs as a function of the z-position, 
determined from the decay of the field after a ramp from 1.4 T to 0 with &B⊥=-0.068 Ts-1. 
The time τbi at postion z is taken as the period during which the field Bbi at position z has 
decayed to 1/e of its steady-state value. The characteristic times are calculated for those 
positions which correspond to the maxima and minima in the field Bbi of Fig. 5.28. 
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Figure 5.29. The characteristic time of the BICCs as a function of the z-position determined after a field 

sweep from 1.4 T to 0 with &B⊥ =-0.068 Ts-1. The τbi-values are determined at those positions 
which correspond to the maxima and minima in Bbi of Fig. 5.28. The lines are linear fits.  
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Both curves are almost parallel, showing that the propagation velocity (see section 5.4.4) is 
more or less constant. The average time constant is slightly larger in the minima than in the 
maxima. This difference is directly related to the flattening in the curves of Fig. 5.28, since 
a flattening implies a larger series resistance in the BICC loop and hence a decrease of the 
characteristic time (see eq. 5.14). 
 
It is interesting to investigate whether the formulas given in sections 5.4.3 and 5.4.4, which 
are valid in the case of a single &B⊥-step, can also be applied to estimate the average 
characteristic time τbi,av and propagation velocity vbi,av for this cable exposed to the &B⊥-
distribution as shown in Fig. 5.25. 
• The average time constant can be calculated using eq. 5.14 taking Rc=100 µΩ, 

lcab,1=0.09 m, lcab,2=1.01 m, Ns=26 and Lp,s=0.13 m, which results in τbi,av=0.3 s. The 
estimated characteristic time is about a factor 7 smaller than the measured one (see 
Fig. 5.29 at about z=3Lp,s).  

• The average propagation velocity for z ≥ 0 is estimated using eq. 5.21, which results in 
vbi,av=1.7⋅107Lp,sRc /(Ns

2lcab,2)=0.3 ms-1. This value corresponds exactly to the 
experimentally obtained vbi,av as deduced from the average slope of Fig. 5.29: 
vbi,av=∆z /∆τbi=2.4Lp,s s-1=0.3 ms-1.  

It can be concluded that the observed phenomena, i.e.: 
− the linear decrease of the BICCs towards the end of the cable, 
− the oscillation of Bbi with a period equal to Lp,s, and 
− the presence of a characteristic time which increases almost linearly along the cable, 
agree qualitatively very well with the calculations using the network model. Quantitative 
comparison of the average characteristic time and propagation velocity is difficult because 
the exact Rc-distribution over the length is not known and the formulas 5.14 and 5.21 are 
only valid for a &B⊥-step.  
 
In order to investigate the influence of sections with small Rc on the characteristics of 
BICCs, the Rc-distribution along the cable length is changed by soldering the ends of the 
cable with SnAg. Field Bbi is depicted in Figs. 5.30 and 5.31 for cases II (i.e. very small Rc,1) 
and III (i.e. very small Rc,1 and Rc,5). 
 The magnitude of Bbi increases strongly due to the local solderings, whereas the phase 
remains constant, in good agreement with the result from the network model. The calculated 
field, using the network model, can be fitted to the measurements by assuming a very small 
effective strand resistivity and taking: 
− Rc,1=1.2 µΩ and Rc,3=100 µΩ (case II), 
− Rc,1=1.2 µΩ, Rc,3=100 µΩ and Rc,5=4 µΩ (case III). 
A simple way to estimate Rc,5 is by considering the increase in the magnitude of the BICCs 
near z=0 of case III compared to case II. Fig. 5.31 shows clearly that the increase is about a 
factor 2 (near z=0) which implies that for z>0 about half of the BICCs return through the 
resistances Rc,3 and the other half through Rc,5. Assuming a very small ρs, this implies that 
the equivalent resistance of the parallel Rc,3’s is about equal to that of the parallel Rc,5’s. 
Hence, Rc,3 /101≈Rc,5 /5 (see Fig. 5.26) or Rc,5≈5 µΩ which agrees well with Rc,5 as obtained 
by the direct simulation using the network model.  
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Figure 5.30. Field Bbi as a function of the z-position for case II with &B⊥ =0.016 Ts-1. The dotted lines show 

the boundaries between the sections with different Rc. The continuous lines correspond to the 
calculated field using the network model. The bold line shows the fitted curve of case I (see 
Fig. 5.28) scaled to &B⊥ =0.016 Ts-1.   
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Figure 5.31. Field Bbi as a function of the z-position for case III with &B⊥ =0.016 Ts-1. The dotted lines 

show the boundaries between the sections with different Rc. The continuous line corresponds 
to the calculated field using the network model. The bold lines correspond to cases I and II 
(see Figs. 5.28 and 5.30) scaled to &B⊥ =0.016 Ts-1.   

It can therefore be concluded that a local ‘dip’ in Rc influences the magnitude of the BICCs 
especially if the ‘dip’ is close to the &B⊥ non-uniformity and if Rc is locally much smaller 
than the mean Rc of the cable. Consider, for example, the cable of a dipole coil with a mean 
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Rc equal to Rc,cab and a joint with length ljoint and Rc=Rc,joint located at a distance ldiff from the 
&B⊥-variation. The joint will only significantly affect the magnitude of the BICCs (if 

classified in regime B) caused by the &B⊥-variation if the distance ldiff is smaller than a few 
times (Rc,cab /Rc,joint)ljoint.  
 If the BICCs are classified in regime A, the joint only affects the BICCs if the distance 
between the joint and the &B⊥-variation is smaller than the characteristic length of the 
BICCs. 
 Note that the above discussion is valid for a joint located in a region with &B⊥=0. If, 
however, the joint is placed in a varying field, then additional BICCs will be induced (as 
discussed in section 5.7) caused by the Rc-step which is present at the boundary between the 
joint and the rest of the cable. 
 
The characteristic times of cases II and III increase, compared to case I, by about a factor 4 
and 10 respectively. Although no calculations are performed, the increase can be well 
understood by considering that the average loop length of the BICCs becomes larger while 
the series resistance in the loops (i.e., in first approximation, the equivalent resistance of the 
parallel Rc’s) becomes smaller. The propagation velocity of the BICCs remains constant for 
0.5Lp,s<z<7.5Lp,s. Simulations on small cables show a similar result, where the propagation 
velocity at position z is mainly determined by the local Rc at position z.  
 
The large characteristic times of up to 30 s (for case III) show that very large τbi,av-values of 
the order of 105 s may occur in magnets, with Rc≈1-10 µΩ and a cable length much larger 
than 1 m, if the BICCs are classified in regime B (see also Fig. 5.16). This implies that the 
characteristic times of about 100 s which are measured in the aperture of the LHC dipole 
model magnets (see sections 7.7.1-7.7.5) have to be attributed to BICCs of regime A, 
decaying over much smaller lengths than the actual length of the cable in the magnet.  

5.9 Conclusions 
So-called Boundary-Induced Coupling Currents (BICCs) are generated in (Rutherford-type) 
cables, which are exposed to a varying field, if the field sweep rate or the contact 
resistances vary along the cable length.  
 BICCs differ from the ‘normal’ interstrand coupling currents because they stay in the 
strands over long distances of 10-103 times the cable pitch (or the length of the cable). 
BICCs propagate through the cable and exhibit large characteristic times of 10-105 s (for 
practical cables) which are several orders of magnitude larger than the time constant of the 
interstrand coupling currents. 
 
The decay of the BICCs along the length of the cable is either quasi-exponential (regime A) 
or quasi-linear (regime B) (section 5.4.1). The type of decay is determined by the ratio 
between Rc and the effective strand resistivity. For large ratios the decay is quasi-linear 
towards 0 at the ends of the cable whereas for smaller ratios the BICCs decay exponentially 
towards 0 with a characteristic length. The slope of the decay varies according to the local 
Rc in the cable.  
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The BICCs are mainly caused by variations in the field change &B⊥ transverse to the cable 
width, and their magnitude increases strongly if the lengths of the &B⊥-variations are of the 
same order or smaller than the cable pitch (see section 5.4.5). In the case of a dipole magnet 
this implies that the field variations in the coil ends cause large BICCs whereas the gradual 
variation of &B⊥ to which the total cable is exposed only causes relatively small BICCs. 
 In practical coils, the magnitude of the BICCs caused by &B⊥-variations is much larger 
than the magnitude caused by Rc-variations (see section 5.7). This implies that the soldered 
cable-to-cable connections cause smaller BICCs than the &B⊥-variations in the coil ends. 
However, local decreases in Rc (and hence also cable-to-cable connections) could 
significantly increase the magnitude and the characteristic time of the BICCs caused by a 
&B⊥-step. This implies that also in cables having a large Rc, BICCs will be present if the 

cable is locally soldered (even if the soldered parts are located in a low-field region).  
 The presence of BICCs causes an additional power loss, also in those parts of the cable 
which are not subject to the varying field. The relative increase of the power loss is large 
compared to the ‘normal’ interstrand coupling loss if only a small part of the cable is 
exposed to a field variation (see section 5.5). In accelerator dipole and quadrupole magnets 
the enhancement of the power loss is smaller than 10% of the interstrand coupling loss.  
 The magnitude of the BICCs can be reduced by increasing the contact resistances Ra and 
especially Rc. Insertion of a resistive barrier in-between the two layers of a Rutherford-type 
cable (with originally Ra=Rc) can reduce the magnitude of the BICCs by about one order of 
magnitude (see section 5.6).  
 
The existence of BICCs is experimentally demonstrated in a 1.3 m long Rutherford-type 
cable exposed to a small local field change. The characteristics of BICCs, such as the decay 
along the length, the decay as a function of the time and the propagation velocity are 
qualitatively in very good agreement with the results based on the network model. The 
influence of local soldering of the cable, simulating the cable-to-cable connections in a coil, 
on the characteristics of the BICCs corresponds to the network results as well. Quantitative 
differences of up to a factor of about 5 are probably caused by the unknown variations in Rc 
along the cable. The fact that the magnitude of BICCs in a single cable is already hard to 
assess shows that the BICCs in an entire coil will be even more complicated to calculate, 
especially if the spatial Rc-distribution is not well-known. 
 Large characteristic times of 104-105 s of the BICCs in accelerator dipole magnets (with 
Rc of the order of 1-10 µΩ) imply that the BICCs are classified in regime B and can attain 
large magnitudes if the ends of the cables are soldered, even if the strands in the rest of the 
cable are in poor electrical contact. BICCs exhibiting characteristic times of the order of 
102-103 s have to be classified in regime A, and their magnitude is much less sensitive to Rc 
in the soldered ends of the cable. In a coil, a combination of these two regimes is present. 
  
In dipole and quadrupole accelerator magnets the BICCs cause sinusoidally varying field 
distortions along the magnet axis with a large characteristic time, an amplitude proportional 
to the central-field-sweep rate and a period equal to the cable pitch. These field distortions 
will be discussed in detail in chapter 7. The effect of the BICCs on the stability of a coil is 
discussed in chapter 8. 


