Nomenclature

a_n	n th relative skew multipole component	=
\boldsymbol{A}	enclosed surface	m^2
A_n	n th multipole skew component	T
A_{str}	cross-section of a strand	m^2
b_n	n th relative normal multipole component	-
<i>B</i> , B	magnetic field	T
B_a	applied magnetic field	T
B_{bi}	field caused by the BICCs	T
B_C	critical magnetic field	T
B_{cc}	field caused by the coupling currents	T
B_{ce}	central field in the aperture of a magnet	T
B_{geo}	field caused by geometrical deviations	T
B_i	induced field	T
B_{if}	field caused by the IFCCs	T
B_{inj}	injection field	T
B_{is}	field caused by the ISCCs	T
B_m	field caused by the filament magnetisation	T
B_n	n th multipole normal component	T
B_{nucd}	field caused by a NUCD	T
B_p	penetration field	T
B_q	quench field	T
B_s	field in the interior of a strand	T
B_{tr}	field caused by the transport current	T
B_0	constant in the Kim relation	T
d_f	diameter filament	m
d_s	diameter strand	m
d_s^*	diameter of the outer layer of filaments in a strand	m
<i>E</i> , E	electric field	Vm ⁻¹
E_{dyn}	electric field caused by the dynamic resistance	Vm ⁻¹
f	frequency	s^{-1}
h_1, h_2	height of a cable (thick edge and thin edge)	m

I	current	A
I_a	current in resistance R_a	A
I_c	current in resistance R_c	A
I_C	critical current	A
I_f	surface current density	$\mathrm{Am}^{\text{-}1}$
$ec{I}_{if}$	net interfilament coupling current	A
I_q	quench current	A
$I_{q,np}^{'},I_{q,p}$	quench current obtained without/with a precycle	A
I_s	coupling current in a strand	A
I_{str}	total strand current	A
I_{tr}	transport current	A
$I_{tr,cab}$	transport current in a cable	A
$I_{tr,str}$	transport current in a strand	A
$I_{tr,str,max}$	maximum transport current in a strand	A
I_0 , J_0	constants in the Kim relation	A, Am ⁻²
J , \mathbf{J}	current density	Am^{-2}
J_C	critical current density	Am ⁻²
J_{tr}	transport current density	Am ⁻²
l_{cab}	cable length	m
l_{coil}	length of a pick-up coil	m
l_M	magnet length	m
l_s	length of a strand section between two nodes	m
L	inductance	Н
$L_{p,f}$	twist pitch of the filaments	m
$L_{p,s}$	twist pitch of the strands (or cable pitch)	m
M	magnetisation	Am^{-1}
M	mutual inductance	Н
n	harmonic component	-
n	shape factor	-
n	<i>n</i> -value of the resistive transition	-
N_b	band number	-
N_B	total number of bands of a cable	-
N_c	number of cable pieces in a stack	-
N_{MUT}	number of bands for the calculation of mutual inductances	-
N_s	number of strands in a cable	-
N_T	number of turns in a coil	-
p_{cab}	packing factor of a cable	-
P	power loss	W
P_a	power loss in the resistances R_a	W
P_c	power loss in the resistances R_c	W
P_{cool}	cooling power	W
$oldsymbol{P}_{if}$	interfilament coupling power loss	W
P_R	power loss in the connections	W
P_s	power loss in the strands	W

Nomenclature 241

P_{wed}	power loss in the wedges	W
q	effective thermal-conductivity coefficient	$Wm^{-3}K^{-1}$
Q_{hys}	hysteresis loss	J
Q_{if}	interfilament coupling loss	J
Q_{is}	interstrand coupling loss	J
Q_{tot}	total loss	J
r	radius	m
r_0	reference radius	m
R	resistance	Ω
R_a	contact resistance between adjacent strands	Ω
R_c	contact resistance between crossing strands	Ω
$R_{c,UI}$	R_c -value determined by the UI method	Ω
R_{mat}	resistance of the matrix	Ω
R_s	strand resistance	Ω
t	time	S
t_d	decay time	S
t_m	time at the discrete step m	S
t_r	ramp time	S
T	temperature	K
T_b	helium bath temperature	K
T_{cab}	cable temperature	K
T_C	critical temperature	K
T_M	field factor of a magnet	TA^{-1}
U	voltage	V
U_{ee}	voltage between the strands at both edges of a cable	V
U_{ind}	induced or inductive voltage	V
U_R	resistive voltage	V
U_{str}	voltage over a strand	V
v_1, v_2, v_3	volume fractions	-
V	volume	m^3
w	width of a cable	m
<i>x</i> , <i>y</i> , <i>z</i>	cartesian coordinates	m
x_0, y_0	reference point	m

Greek symbols

$lpha_{cond}$	aspect ratio of a monolithic conductor	-
α_k	keystone angle	deg
$lpha_{cab}$	aspect ratio of a cable	-
$lpha_0$	aspect ratio of a cable having strands with a round cross-section	-
α_m	coefficient of magnetoresistivity	T^{-1}
eta_{I}	field geometry factor for the ISCCs	-
β_{P}	field geometry factor for the ISCL	-

eta_{str}	field geometry factor at a strand position	-
η	volumetric proportion of superconductor in a composite	-
θ	angle (see Figs. 4.1 and 2.2a)	deg
λ	copper to superconductor (Cu/SC) ratio	-
λ_{cu}	thermal conductivity coefficient of copper	$Wm^{-1}K^{-1}$
λ_{ins}	thermal conductivity coefficient of a cable insulation	$Wm^{-1}K^{-1}$
μ	permeability	Hm ⁻¹
$\mu_{e\!f\!f}$	effective permeability	Hm ⁻¹
μ_0	permeability of vacuum	Hm ⁻¹
ξ	characteristic length of the BICCs	m
$ ho_{cu}$	resistivity of copper	Ω m
$ ho_{\!e\!f\!f}$	effective transverse resistivity of a strand	Ω m
$ ho_c$	effective resistivity of a cross contact	Ω m
$ ho_{mat}$	matrix resistivity	Ω m
$ ho_s$	effective resistivity of a strand	Ω m
σ	stress	Pa
au	time constant	S
$ au_{bi}$	characteristic time of the BICCs	S
$ au_{if}$	time constant of the IFCCs	S
$ au_{is}$	time constant of the ISCCs	S
φ	angle (see Figs. 3.5 and 4.1)	deg
ω	angular frequency (= $2\pi f$)	rad s ⁻¹

Common subscripts

normal component
parallel component
between adjacent strands
average
boundary-induced
between crossing strands
cable
effective
turn number
interfilament
interstrand
magnet
strand
stack
total
transport

Nomenclature 243

Abbreviations

A1, A2 Nomenclature of the apertures (see Fig. 6.4) A11, A12, A21, A22 Nomenclature of the poles (see Fig. 6.4)

Block numbers (see Fig. 2.2b) B1, B2, ..., B6 **BICC Boundary-Induced Coupling Current FPC** Fixed Pick-up Coil (see scetion 7.6) H12, H3, H4, H5, H67 Pick-up coils (see section 7.7) InterFilament Coupling Current **ISCC** InterStrand Coupling Current **IFCL** InterFilament Coupling Loss **ISCL InterStrand Coupling Loss** Large Hadron Collider LHC

NUCD Non-Uniform Current Distribution
PBD Pink Book Dipole magnet (see Table 2.1)

PC Persistent Current

RPC Rotating Pick-up Coil (see section 7.6)

RRL Ramp Rate Limitation
SA Single-Aperture
TA Twin-Aperture

WBD White Book Dipole magnet (see Table 2.1)