ELECTRODYNAMICS OF SUPERCONDUCTING CABLES IN ACCELERATOR MAGNETS

Publication of this thesis has been financially supported by Holec Ridderkerk, The Netherlands

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Verweij, Arjan Peter

Electrodynamics of superconducting cables in accelerator magnets / Arjan Peter Verweij. - [S.l. : s.n.]. - 111. Proefschrift Universiteit Twente Enschede. - Met lit. opg. - Met samenvatting in het Nederlands. ISBN 90-9008555-6 Trefw.: supergeleiding / versnellers / electrodynamica.

Eerste Uitgave 1995 Druk: Universiteit Twente

© A.P. Verweij 1995

ELECTRODYNAMICS OF SUPERCONDUCTING CABLES IN ACCELERATOR MAGNETS

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Universiteit Twente, op gezag van de rector magnificus, prof. dr. Th.J.A. Popma, volgens besluit van het College voor Promoties in het openbaar te verdedigen op vrijdag 15 september 1995 te 15.00 uur.

door

Arjan Peter Verweij geboren op 7 januari 1968 te Arnhem Dit proefschrift is goedgekeurd door:

prof. dr. C. Daum (promotor) en dr. ir. H.H.J. ten Kate (assistent-promotor).

Preface

The work described in this thesis has been carried out partially in the Low Temperature group at the University of Twente and partially in the AT-MA group at CERN, in the framework of a collaboration agreement between CERN, the University of Twente, STW and NIKHEF.

I would like to thank all members of both groups for their help and the pleasant atmosphere during the day. Also the support of those who took care of the helium and the cryogenics of the magnets, often in the evening and in the weekend, is acknowledged.

I appreciated the help of the following persons in particular:

Kees Daum and Herman ten Kate for their general support and many useful comments on the concept text,

Daniel Leroy, Luc Oberli, David Richter, Andrjez Siemko, Peter Sievers, Louis Walckiers and Rob Wolf for their interest, advice and many fruitful discussions,

Stephan Russenschuck, for providing various field maps,

Christian Giloux, Guillaume Gerin and Benoît Geroudet for measuring many magnets in Block 4 and SM18,

Lars Eriksson, Andy Hofstede, Marijn Oomen, Bart Sachse and Maarten Bouwhuis for performing many experiments at the university,

John Baxter and Joyce Moore for correcting my English language.

Finally, I would like to thank my family and friends for their interest and encouragement, our sporting activities on clay, grass and snow, and other distractions in the evenings and weekends.

Enschede, September 1995

Arjan Verweij

Contents

1.	General introduction				
	1.1	Introduction to the electrodynamic properties of superconducting	10		
		cables and magnets	12		
	1.2	Superconducting magnets	15		
	1.3	Accelerator magnets	17		
	1.4	Scope of the thesis	20		
2.	Multistrand cables and magnets				
	2.1	.1 Magnetic field in the aperture of a magnet			
	2.2	Magnet characteristics	25		
		2.2.1 Magnet designs	29		
		2.2.2 Cold mass	30		
		2.2.3 Pre-compression of the coils	31		
		2.2.4 Field and force distributions	31		
		2.2.5 Superconductor	33		
		2.2.6 Quenching and protection	33		
		2.2.7 Operating procedure	34		
		2.2.8 Beam losses	35		
		2.2.9 Survey of the model magnets	35		
	2.3	Strand and cable characteristics	36		
	2.4	The $I_C(B, T)$ relation	40		
	2.5	Conclusions	42		
3.	Losses in strands				
	3.1	Introduction			
	3.2	Hysteresis loss	44		
	3.3	The J_C -B relation	48		
	3.4	Interfilament coupling currents	51		
	3.5	Interfilament time constants	56		
	3.6	Conclusions			
4.	Interstrand coupling currents				
	4.1	Introduction	62		
	4.2	Network model of a Rutherford-type cable	64		
	4.3	Contact resistances R_a and R_c	72		
	4.4	Weak excitation	74		
		4.4.1 Steady-state calculations	74		
		4.4.2 Step response calculations	77		
	4.5	Strong excitation	80		

	4.6	Cables with R_c varying across the cable width	83
	4.7	Cables with \dot{B}_{\perp} varying across the cable width	85
	4.8	Cables of finite length with constant \dot{B}	87
	4.9	Stacked cables	89
	4.10	Influence of transverse pressure on R_c	90
		4.10.1 Introduction	90
		4.10.2 Theoretical model for the calorimetric method	91
		4.10.3 Theoretical model for the electrical method	92
		4.10.4 Experimental set-up	94
		4.10.5 Results and discussion	95
	4.11	Conclusions	99
5.	Bou	ndary-induced coupling currents	101
	5.1	Introduction	102
	5.2	Cables with insulated strands	105
	5.3	Simulating BICCs	107
	5.4	Cables exposed to a \dot{B}_{\perp} -step	109
		5.4.1 Characteristic BICC pattern	109
		5.4.2 Magnitude and characteristic length of BICCs under	
		steady-state conditions	116
		5.4.3 Characteristic time of BICCs	119
		5.4.4 Propagation velocity of BICCs	122
		5.4.5 Arbitrary \dot{B}_{\perp} -distributions	123
	5.5	Cable that are partially exposed to \dot{B}_{\perp}	125
	5.6	\dot{B}_{\perp} -steps with $R_c \gg R_a$	128
	5.7	Non-uniform <i>R</i> _c -distributions	129
	5.8	Experimental observation of BICCs in a 1.3 m long cable	131
		5.8.1 Introduction	131
		5.8.2 Experimental set-up	132
		5.8.3 Results and discussion	135
	5.10	Conclusions	140
6.	Cou	pling-current losses in accelerator dipole magnets	143
	6.1	Introduction	144
	6.2	Loss components in magnets	145
		6.2.1 Hysteresis loss	145
		6.2.2 Interfilament coupling loss	146
		6.2.3 Interstrand coupling loss	148
		6.2.4 Losses in the connections and the wedges	150
		6.2.5 Total loss	151
	6.3	Measuring losses of a magnet during ramping	154
	6.4	Experimentally determined R_c -values of LHC magnets	158
	6.5	Conclusions	162

7.	Cou	pling-current induced field distortions	165		
	7.1	Introduction	166		
	7.2	Calculating coupling-current induced field distortions			
	7.3	Field \mathbf{B}_{if} in dipole magnets	171		
	7.4	Field \mathbf{B}_{is} in dipole magnets	172		
	7.5	Field \mathbf{B}_{bi} in dipole magnets	176		
	7.6	Experimental methods to determine \mathbf{B}_{cc}	177		
	7.7	Experimental results of field \mathbf{B}_{cc} in LHC dipole magnets	179		
		7.7.1 1 m long CE1 magnet	180		
		7.7.2 1 m long EL2 magnet	184		
		7.7.3 10 m long AN2 magnet	185		
		7.7.4 10 m long AN3 magnet	188		
		7.7.5 Evaluation of fields \mathbf{B}_{is} and \mathbf{B}_{bi}	189		
	7.8	Conclusions	191		
8.	Ramp-rate limitation of dipole magnets				
	8.1	Introduction	194		
	8.2	Calculation of the RRL of magnets	195		
		8.2.1 Influence of IFCCs on the RRL	196		
		8.2.2 Influence of ISCCs on the RRL	197		
		8.2.3 Influence of BICCs on the RRL	199		
		8.2.4 Influence of the ISCL on the RRL	202		
		8.2.5 Discussion	205		
	8.3	Influence of BICCs on the RRL in LHC dipole magnets			
	8.4	.4 Estimate of the temperature increase of the cable due to power			
		losses in the coil	215		
	8.5	Negative field-sweep rates	218		
	8.6	Conclusions	221		
9.	General conclusions and recommendations				
	9.1	Modelling of coupling currents in multistrand cables	224		
	9.2	Restrictions of the contact resistances	227		
	9.3	Controlling and measuring contact resistances	229		
	9.4	Effect of coupling currents in other magnets	230		
References					
No	Nomenclature				
Su	Summary (in Dutch)				